In this paper, we present a robust adaptive model predictive control (MPC) scheme for linear systems subject to parametric uncertainty and additive disturbances. The proposed approach provides a computationally efficient formulation with theoretical guarantees (constraint satisfaction and stability), while allowing for reduced conservatism and improved performance due to online parameter adaptation. A moving window parameter set identification is used to compute a fixed complexity parameter set based on past data. Robust constraint satisfaction is achieved by using a computationally efficient tube based robust MPC method. The predicted cost function is based on a least mean squares point estimate, which ensures finite-gain L2 stability of the closed loop. The overall algorithm has a fixed (user specified) computational complexity. We illustrate the applicability of the approach and the trade-off between conservatism and computational complexity using a numerical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.