Background Chronic illnesses like obesity, type 2 diabetes (T2D) and cardiovascular diseases, are worldwide major causes of morbidity and mortality. These pathological conditions involve interactions between environmental, genetic, and epigenetic factors. Recent advances in nutriepigenomics are contributing to clarify the role of some nutritional factors, including dietary fatty acids in gene expression regulation. This systematic review assesses currently available information concerning the role of the different fatty acids on epigenetic mechanisms that affect the development of chronic diseases or induce protective effects on metabolic alterations. Methods A targeted search was conducted in the PubMed/Medline databases using the keywords “fatty acids and epigenetic”. The data were analyzed according to the PRISMA-P guidelines. Results Consumption fatty acids like n-3 PUFA: EPA and DHA, and MUFA: oleic and palmitoleic acid was associated with an improvement of metabolic alterations. On the other hand, fatty acids that have been associated with the presence or development of obesity, T2D, pro-inflammatory profile, atherosclerosis and IR were n-6 PUFA, saturated fatty acids (stearic and palmitic), and trans fatty acids (elaidic), have been also linked with epigenetic changes. Conclusions Fatty acids can regulate gene expression by modifying epigenetic mechanisms and consequently result in positive or negative impacts on metabolic outcomes.
<b><i>Background:</i></b> Chronic diseases arise as a consequence of an unhealthy lifestyle primarily characterized by physical inactivity and unbalanced diets. Regular physical activity can improve health, and there is consistent evidence that these improvements may be the result of epigenetic modifications. <b><i>Objective:</i></b> To identify epigenetic modifications<b><i></i></b>as outcomes of exercise interventions related to specific metabolic alterations. <b><i>Methods:</i></b> The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) methodology for manuscript research and preparation was followed using PubMed and EBSCO databases for literature review. Out of 2,638 articles identified, only 34 articles met the inclusion criteria. <b><i>Results:</i></b> The sections of the review were organized by metabolic alterations in which studies were grouped according to healthy, diseased, and trained individuals. Resistance exercise in humans induced epigenetic changes in pathways associated with energy metabolism and insulin sensitivity, contributing to healthy skeletal muscle. Endurance exercise also caused modifications in biomarkers associated to metabolic alterations through changes in DNA methylation and the expression of specific miRNAs. However, both resistance and endurance exercise are necessary to obtain a better physiological adaptation and a combination of both seems to be needed to properly tackle the increasing prevalence of non-communicable pathologies. <b><i>Conclusion:</i></b> Given the heterogeneity and complexity of the existing literature, it is currently not possible to propose a specific recommendation about the type, intensity, or duration of exercise that could be beneficial for different subsets of the population (healthy, diseased, and/or trained). Nevertheless, this review highlights the importance of exercise for health and shows the need to perform more research in this emerging area to identify epigenetic biomarkers that could serve as indicators of exercise adaptations.
Objective: The aim of this study was to analyze dietary ω-6:ω-3 polyunsaturated fatty acid (PUFA) ratio and its association with adiposity and serum adiponectin levels in a Mexican population. Methods: In this cross-sectional study, individuals with a BMI ≥ 18.5 kg/m 2 , were classified using four methods to measure adiposity. Parameters of body composition were measured by InBody 3.0. Diet intake was evaluated prospectively using a 3-day written food record. Serum high-molecular weight adiponectin isoform was measured using an ELISA assay. Biochemical and adiposity variables were analyzed by tertiles of dietary ω-6:ω-3 PUFA ratio. Results: A total of 170 subjects were recruited with a mean age of 36.9 ± 11.8 years. The 73.5% of subjects were women. Subjects in the higher tertile of dietary ω-6:ω-3 PUFA ratio had more adiposity and higher levels of triglycerides, VLDL-c, glucose, insulin and HOMA-IR than those in the first tertile (p < 0.05). Adiponectin levels showed a trend according to dietary This study suggests that high dietary ω-6:ω-3 PUFA ratio is positively associated with excessive adiposity and worse metabolic profile.
Background: Obesity is characterized by low-grade chronic inflammation and an excess of adipose tissue. The ASC gene encodes a protein that is part of the NLRP3 inflammasome, a cytosolic multiprotein complex that is associated with inflammation and metabolic alterations. To our knowledge, there is no evidence regarding ASC gene activity in obese adults in response to lifestyle modifications. Purpose: To evaluate the effect of hypocaloric diet and moderate-intensity structured exercise intervention on ASC gene expression and inflammatory markers in obese adults. Methods: Thirty-seven obese individuals aged 25 to 50 years were randomized to the hypocaloric diet exercise group or hypocaloric diet group. The participants underwent a 4-month follow-up. Electrical bioimpedance was used for body composition analysis. Biochemical data were analyzed by dry chemistry and insulin levels by ELISA. ASC gene expression from peripheral blood was performed using real-time PCR. Dietary data was collected through questionnaires and analyzed using the Nutritionist Pro™ software. Quantification of cytokines was conducted using Bio-Plex Pro™ Human cytokine. The Astrand-Ryhming test was used to estimate the maximum oxygen volume and design the moderate-intensity structured exercise program~75% heart rate (HR) Results: After the intervention, both study groups significantly improved body composition (decreased weight, fat mass, waist circumference and abdominal obesity, p < 0.05). Besides, the diet-exercise group significantly decreased ASC mRNA expression, MCP-1, and MIP-1β inflammatory cytokines compared to the diet group (p < 0.05). While in the diet group, MCP-1 and IL-8 exhibited significantly decreased levels (p < 0.05). In the diet-exercise group, a positive correlation between the atherogenic index and waist circumference was found (r = 0.822, p = 0.011), and a negative correlation was observed between the delta of ASC mRNA expression and IL-10 levels at the end of the intervention (r = − 0.627, p = 0.019).
Background The ACTN3 gene is primarily expressed in fast skeletal muscle fibres. A common nonsense polymorphism in this gene is ACTN3 R577X (rs1815739), which causes an absolute deficiency of α‐actinin‐3 protein and alterations in muscle metabolism. Considering metabolic alterations are influenced by nutrition and genetic factors, as well as lifestyle factors, we hypothesise a possible association of the ACTN3 R577X polymorphism with metabolic alterations. Methods In this cross‐sectional study, 397 adults met the inclusion criteria. Body composition was measured by electrical bioimpedance. Dietary data were analysed using Nutritionist Pro™ software. Biochemical variables were determined by dry chemistry. Genomic DNA was extracted from peripheral leukocytes and genotyping of the ACTN3 R577X polymorphism was determined by allelic discrimination using TaqMan probes. The statistical analyses were performed using SPSS statistical software. p < 0.05 was considered statistically significant. Results The ACTN3 577XX genotype was associated with high glucose, triglyceride and very low density lipoprotein‐cholesterol levels and a higher frequency of hypertriglyceridaemia and insulin resistance in women. In males, the genetic variant showed a trend towards significance for insulin resistance. Conclusions The ACTN3 R577X polymorphism was associated with metabolic alterations in women and a tendency was observed in men variant carriers. Thus, this common genetic variant could be implicated in the development of chronic metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.