BackgroundPostural control disturbances are one of the important causes of disability in stroke patients affecting balance and mobility. The impairment of sensory input integration from visual, somatosensory and vestibular systems contributes to postural control disorders in post-stroke patients. Robot-assisted gait training may be considered a valuable tool in improving gait and postural control abnormalities.ObjectiveThe primary aim of the study was to compare the effects of robot-assisted stair climbing training against sensory integration balance training on static and dynamic balance in chronic stroke patients. The secondary aims were to compare the training effects on sensory integration processes and mobility.MethodsThis single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with postural instability. The experimental group (EG, n = 16) received robot-assisted stair climbing training. The control group (n = 16) received sensory integration balance training. Training protocols lasted for 5 weeks (50 min/session, two sessions/week). Before, after, and at 1-month follow-up, a blinded rater evaluated patients using a comprehensive test battery. Primary outcome: Berg Balance Scale (BBS). Secondary outcomes:10-meter walking test, 6-min walking test, Dynamic gait index (DGI), stair climbing test (SCT) up and down, the Time Up and Go, and length of sway and sway area of the Center of Pressure (CoP) assessed using the stabilometric assessment.ResultsThere was a non-significant main effect of group on primary and secondary outcomes. A significant Time × Group interaction was measured on 6-min walking test (p = 0.013) and on posturographic outcomes (p = 0.005). Post hoc within-group analysis showed only in the EG a significant reduction of sway area and the CoP length on compliant surface in the eyes-closed and dome conditions.ConclusionPostural control disorders in patients with chronic stroke may be ameliorated by robot-assisted stair climbing training and sensory integration balance training. The robot-assisted stair climbing training contributed to improving sensorimotor integration processes on compliant surfaces. Clinical trial registration (NCT03566901).
This study reviewed data from 50 chronic stroke patients with spastic equinovarus foot in order to compare the outcome of tibial nerve (main trunk and motor branches) diagnostic block (which temporarily relieves focal muscle overactivity, allowing assessment of the contribution of different muscles) with that of subsequent botulinum toxin injected into the same muscles as were targeted by the nerve block. Outcome measures were passive motility of the affected ankle and overactivity of the calf muscles. All patients were evaluated before and after the nerve block, and 4 weeks after the botulinum toxin injection. Significant improvements were found both after the nerve block and after botulinum toxin injection in comparison with the baseline condition; however, the improvements observed after nerve block were significantly greater. These results confirm that diagnostic nerve block is a useful screening tool for use before botulinum toxin treat ment, although less improvement occurred after botulinum toxin injection compared with after nerve block. Objective: To evaluate the role of diagnostic nerve block in predicting the outcome of subsequent botulinum toxin type A treatment for spastic equinovarus foot due to chronic stroke. Design: Retrospective observational study. Patients: Fifty chronic stroke patients with spastic equinovarus foot. Methods: Each patient was given diagnostic tibial nerve block (lidocaine 2% perineural injection) assessment followed by botulinum toxin type A inoculation into the same muscles as had been targeted by the nerve block. All patients were evaluated before diagnostic nerve block, after the nerve block, and 4 weeks after botulinum toxin injection. Outcomes were ankle dorsiflexion passive range of motion of the affected side, and calf muscle spasticity, measured with the modified Ashworth scale and the Tardieu Scale. Results: Significant improvements were measured after diagnostic nerve block and botulinum toxin injection compared with the baseline condition. Diagnostic nerve block led to significantly greater improvements in all outcomes than botulinum toxin injection. Conclusion: This study confirmed diagnostic nerve block as a valuable screening tool in deciding whether to treat spastic equinovarus with botulinum toxin. However, the results support the evidence that diagnostic nerve block results in a greater reduction in muscle overactivity than does botulinum toxin type A in patients with spastic equinovarus due to stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.