Malignant pleural mesothelioma is an asbestos-related neoplasm with poor prognosis, refractory to current therapies, the incidence of which is expected to increase in the next decades. Female gender was identified as a positive prognostic factor among other clinical and biological prognostic markers for malignant mesothelioma, yet a role of estrogen receptors (ERs) has not been studied. Our goal was to investigate ERs expression in malignant mesothelioma and to assess whether their expression correlates with prognosis. Immunohistochemical analysis revealed intense nuclear ERB staining in normal pleura that was reduced in tumor tissues. Conversely, neither tumors nor normal pleura stained positive for ERA. Multivariate analysis of 78 malignant mesothelioma patients with pathologic stage, histologic type, therapy, sex, and age at diagnosis indicated that ERB expression is an independent prognostic factor of better survival. Moreover, studies in vitro confirmed that treatment with 17B-estradiol led to an ERB-mediated inhibition of malignant mesothelioma cell proliferation as well as p21 CIP1 and p27 KIP1 up-regulation. Consistently cell growth was suppressed by ERB overexpression, causing a G 2 -M-phase cell cycle arrest, paralleled by cyclin B1 and survivin down-regulation. Our data support the notion that ERB acting as a tumor suppressor is of high potential relevance to prediction of disease progression and to therapeutic response of malignant mesothelioma patients.
The early gene early growth response (Egr-1), a broadly expressed member of the zing-finger family of transcription factors, is induced in many cell types by a variety of growth and differentiation stimuli, including epidermal growth factor (EGF). Here we demonstrate that Egr-1 expression is mainly regulated by integrin-mediated adhesion. Integrin-dependent adhesion plays a dual role in Egr-1 regulation, either being sufficient "per se" to induce Egr-1, or required for EGF-dependent expression of Egr-1, which occurs only in adherent cells and not in cells in suspension. To dissect the molecular basis of integrin-dependent Egr-1 regulation, we show by FLIM-based FRET that in living cells beta1-integrin associates with the EGF receptor (EGFR) and that EGF further increases the extent complex formation. Interestingly, Egr-1 induction depends on integrin-dependent PI3K/Akt activation, as indicated by the decrease in Egr-1 levels in presence of the pharmacological inhibitor LY294002, the kinase-defective Akt mutant and Akt1/2 shRNAs. Indeed, upon adhesion activated Akt translocates into the nucleus and phosphorylates FoxO1, a Forkhead transcription factors. Consistently, FoxO1silencing results in Egr-1-increased levels, indicating that FoxO1 behaves as a negative regulator of Egr-1 expression. These data demonstrate that integrin/EGFR cross-talk is required for expression of Egr-1 through a novel regulatory cascade involving the activation of the PI3K/Akt/Forkhead pathway.
Fast and simple: the complexity of steroids can be mimicked by two phenol rings linked together by the easiest of reactions: the click [3+2] azide‐alkyne cycloaddition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.