Reversible Hydrogen Bonds (RHB) have been explored to confer self-healing function to multifunctional nanocomposites. This study has been carried out through a sequence of different steps. Hydrogen bonding moieties, with the intrinsic ability to simultaneously perform the functions of both hydrogen donors and acceptors, have been covalently attached to the walls of carbon nanotubes. The epoxy matrix has been modified to adapt the formulation for hosting self-healing mechanisms. It has been toughened with different percentages of rubber phase covalently linked to the epoxy precursor. The most performant matrix, from the mechanical point of view, has been chosen for the incorporation of MWCNTs. Self-healing performance and electrical conductivities have been studied. The comparison of data related to the properties of nanocomposites containing incorporated functionalized and nonfunctionalized MWCNTs has been performed. The values of the electrical conductivity of the self-healing nanocomposites, containing 2.0% by weight of functionalized multiwalled carbon nanotubes (MWCNTs), range between 6.76 × 10−3 S/m and 3.77 × 10−2 S/m, depending on the nature of the functional group. Curing degrees, glass transition temperatures, and storage moduli of the formulated multifunctional nanocomposites prove their potential for application as functional structural materials.
This paper proposes the design of toughened self-healing supramolecular resins able to fulfill functional and structural requirements for industrial applications. These new nanocomposites are based on compounds acting as promotors of reversible self-healing interactions. Electrically conductive carbon nanotubes, selected among those allowing to reach the electrical percolation threshold (EPT) with a very low amount of nanofiller, were dispersed in the self-healing polymeric matrix to contrast the electrical insulating properties of epoxy matrices, as required for many applications. The formulated supramolecular systems are thermally stable, up to 360 °C. Depending on the chemical formulation, the self-healing efficiency η, assessed by the fracture test, can reach almost the complete self-repairing efficiency (η = 99%). Studies on the complex viscosity of smart nanocomposites highlight that the effect of the nanofiller dominates over those due to the healing agents. The presence of healing compounds anchored to the hosting epoxy matrix determines a relevant increase in the glass transition temperature (Tg), which results in values higher than 200 °C. Compared to the unfilled matrix, a rise from 189 °C to 223 °C is found for two of the proposed formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.