Mitochondrial components, including mitochondrial DNA (mtDNA), when released extracellularly, can act as "damage-associated molecular pattern" (DAMP) agents and cause inflammation. As many elderly people are characterized by a low-grade, chronic inflammatory status defined "inflamm-aging," we evaluated if circulating mtDNA can contribute to this phenomenon. Eight hundred and thirty-one Caucasian subjects were enrolled in the study, including 429 siblings aged 90-104 (90+ siblings). mtDNA plasma levels increased gradually after the fifth decade of life. In 90+ subjects, mtDNA values of two members of the same sibling relationship were directly correlated, suggesting a role for familiar/genetic background in controlling the levels of circulating mtDNA. The subjects with the highest mtDNA plasma levels had the highest amounts of TNF-α, IL-6, RANTES, and IL-1ra; the subjects with the lowest mtDNA levels had the lowest levels of the same cytokines. In vitro stimulation of monocytes with mtDNA concentrations similar to the highest levels observed in vivo resulted in an increased production of TNF-α, suggesting that mtDNA can modulate the production of proinflammatory cytokines. Our findings therefore show that circulating mtDNA increases with age, and can significantly contribute to the maintenance of the low-grade, chronic inflammation observed in elderly people.
The genetic contribution to the variation in human lifespan is ∼25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥85 years) and 16 121 younger controls (<65 years) followed by replication in an additional set of 13 060 long-lived individuals and 61 156 controls. In addition, we performed a subset analysis in cases aged ≥90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P = 1.74 × 10−8). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 × 10−36), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34 103), the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.
The possibility to control inflamm-ageing represents a powerful tool to modulate and counteract the major age-related pathologies and it is urgent to clarify the shady areas of the complex mechanisms underpinning inflamm-ageing in order to carry out targeted therapeutic interventions towards an improvement of the health status in the elderly population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.