A significant proportion of extracellular nucleic acids in plasma circulate highly protected in tumor-specific exosomes, but it is unclear how the release of exosomes is modulated in carcinogenesis. We quantified by cytometry exosomes in plasma of 91 colorectal cancer patients to evaluate their potential as a tumor indicator and their repercussions on diagnosis and prognosis. We examined the involvement of TSAP6, a TP53-regulated gene involved in the regulation of vesicular secretion, in levels of circulating exosomes in plasma of colorectal patients and in HCT116 TP53-(wild-type and null) human colorectal cancer cell lines. The fraction of exosomes in cancer patients was statistically higher than in healthy controls (mean rank ¼ 53.93 vs. 24.35). High levels of exosomes in plasma of patients correlated with high levels of carcino-embryonic antigen (P ¼ 0.029) and with poorly differentiated tumors (P ¼ 0.039) and tended to have shorter overall survival than patients with low levels (P ¼ 0.056). Release of exosomes did not correlate with TSAP6 expression; and regulation of TSAP6 by TP53 was not shown either in tumor samples or in HCT116 cell lines. Although it was not suggested that the TP53/TSAP6 pathway regulates the release of exosomes into the plasma of colorectal cancer patients, the level of circulating exosomes may be used as a tumor indicator, because it correlates with poor prognosis parameters and shorter survival.
CD94/NKG2C and lack of FcεRγ (FcRγ) expression are considered markers of the adaptive NK cell response to human CMV (HCMV) infection. Despite the fact that FcRγ− and NKG2Cbright NK cells share some phenotypic, epigenetic, and functional features, their relationship remains unclear. To address this issue, a systematic analysis of NKG2Cbright and FcRγ expression was carried out in NK cells from a cohort of healthy young adults (n = 81) considering NKG2C copy number, previously related to the magnitude of NKG2C+ NK cell expansion. NKG2Cbright and FcRγ− NK cells coincided in a subgroup of HCMV+ individuals, pointing to a common host–virus interaction pattern. Even though FcRγ loss was often confined to expanded NKG2Cbright NK cells, both markers appeared occasionally dissociated, consistent with the existence of distinct adaptive NK cell subsets. Remarkably, FcRγ loss was mostly accumulated within the NKG2Cbright subset in NKG2C+/+ subjects, whereas NKG2C−FcRγ− NK cell subpopulations were more frequently detected in NKG2C+/del donors and also in NKG2Cdel/del individuals, independently of activating killer Ig–like receptor expression. The distribution of other NK receptors (i.e., killer Ig–like receptor, LILRB1, or CD57) supported a sequential differentiation from NKG2CbrightFcRγ+ to NKG2CbrightFcRγ− NK cells. Noticeably, NKG2Cbright NK cells produced more TNF-α in response to Ab-dependent activation, regardless of their FcRγ levels. Moreover, the TNF-α response of NKG2C−FcRγ− subpopulations was lower than that of concurrent NKG2CbrightFcRγ− NK cells, further supporting that FcRγ levels and enhanced potential for cytokine production are uncoupled. Overall, our data extend the characterization of adaptive NK cell subsets that differentiate in response to HCMV, supporting a relationship between their distribution and NKG2C copy number.
HSV-1 establishes life-long latency that can result in clinical relapses or in asymptomatic virus shedding. Although virtually all adults have been exposed to HSV-1, the clinical course varies remarkably. Genetic host variability could be related to this clinical diversity. In this study, we analyzed the contribution of gene families in chromosomes 1, 6, 12, and 19, which encode key regulators of the innate and adaptive immunity, in a cohort of 302 individuals. Class I and class II alleles of the HLA system, the copy-number variation of NK cell receptor genes (KIR and NKG2C), the combinations of killer cell Ig-like receptor and their HLA ligands, and CD16A and CD32A allotypes of variable affinity for IgG subclasses were all studied. Although no major susceptibility locus for HSV-1 was identified, our results show that the risk of suffering clinical HSV-1 infection is modified by MHC class I allotypes (B*18, C*15, and the group of alleles encoding A19), the high-affinity receptor/ligand pair KIR2DL2/HLA-C1, and the CD16A-158V/F dimorphism. Conversely, HLA class II and CD32A polymorphisms and NKG2C deletion did not seem to influence the clinical course of herpetic infection. Collectively, these findings support an important role in host defense against herpetic infection for several polymorphic genes implicated in adaptive immunity and in surveillance of its subversion. They confirm the crucial role of cytotoxic cells (CTL and NK) and the contribution of genetic diversity to the clinical course of HSV-1 infection.
Herpes zoster (HZ) is associated with substantial morbidity. It is caused by reactivation of the latent varicella zoster virus (VZV) following decline in cell-mediated immunity, which is commonly age-related, but also occurs in individuals with immunosuppressive diseases and/ or treatment. Since coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has been associated with T cell immune dysfunction and there have been reports of HZ in COVID-19 patients, we have performed a review of available literature on whether COVID-19 could trigger HZ. We identified 27 cases of HZ following COVID-19, which most frequently occurred within 1-2 weeks of COVID-19, and the majority of cases had typical presentation. Atypical presentations of HZ were noted especially in patients with lymphopenia. It has been hypothesized that VZV reactivation occurs as a consequence of T cell dysfunction (including lymphopenia and lymphocyte exhaustion) in COVID-19 patients. Based on current evidence, which is limited to case reports and case series, it is not possible to determine whether COVID-19 increases the risk of HZ. Practitioners should be aware of the possible increased risk of HZ during the pandemic period and consider timely therapeutic and preventive measures against it.
A recently developed anti-KIR2DL5 (CD158f) antibody has demonstrated KIR2DL5 expression on the surface of NK and T lymphocytes, making it the last functional KIR identified in the human genome. KIR2DL5 belongs to an ancestral lineage of KIR with Ig-like domains of the D0-D2 type, of which KIR2DL4, an HLA-G receptor, is the only other human member. Despite KIR2DL4 and KIR2DL5 being encoded by genes with similar domain usage, several KIR2DL5 functions resemble more closely those of KIR recognizing classical HLA class I molecules – surface-expressed KIR2DL5 inhibits NK cells through the SHP-2 phosphatase and displays a clonal distribution on NK and T lymphocytes. No activating homolog of KIR2DL5 has been described in any species. The genetics of KIR2DL5 is complicated by duplication of its gene in an ancestor of modern humans living ∼1.7 million years ago. Both KIR2DL5 paralogs have undergone allelic diversification; the centromeric gene is most often represented by alleles whose expression is silenced epigenetically through DNA methylation, thus providing a natural system to investigate the regulation of KIR transcription. The role of KIR2DL5 in immunity is not completely understood, in spite of different attempts to define its ligand. Here we revisit the most relevant characteristics of KIR2DL5, an NK-cell receptor possessing a unique combination of genetic, structural, and functional features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.