In this paper the performance of a sensor system, which has been developed to estimate hip and knee angles and the beginning of the gait phase, have been investigated. The sensor system consists of accelerometers and gyroscopes. A new algorithm was developed in order to avoid the error accumulation due to the gyroscopes drift and vibrations due to the ground contact at the beginning of the stance phase. The proposed algorithm have been tested and compared to some existing algorithms on over-ground walking trials with a commercial device for assisted gait. The results have shown the good accuracy of the angles estimation, also in high angle rate movement.
Abstract-Redundant and non-operational buildings at nuclear sites are decommissioned over a period of time. The process involves demolition of physical infrastructure resulting in large quantities of residual waste material. The resulting waste materials are packed into import containers to be delivered for post-processing, containing either sealed canisters or assortments of miscellaneous objects. At present postprocessing does not happen within the United Kingdom. Sellafield Ltd. and National Nuclear Laboratory are developing a process for future operation so that upon an initial inspection, imported waste materials undergo two stages of post-processing before being packed into export containers, namely sort and segregate or sort and disrupt. The postprocessing facility will remotely treat and export a wide range of wastes before downstream encapsulation. Certain wastes require additional treatment, such as disruption, before export to ensure suitability for long-term disposal. This article focuses on the design, development, and demonstration of a reconfigurable rational agent-based robotic system that aims to highly automate these processes removing the need for close human supervision. The proposed system is being demonstrated through a downsized, lab-based setup incorporating a smallscale robotic arm, a time-of-flight camera, and high-level rational agentbased decision making and control framework.
Abstract. We report on experiences in the development of hybrid autonomous systems where high-level decisions are made by a rational agent. This rational agent interacts with other sub-systems via an abstraction engine. We describe three systems we have developed using the EASS BDI agent programming language and framework which supports this architecture. As a result of these experiences we recommend changes to the theoretical operational semantics that underpins the EASS framework and present a fourth implementation using the new semantics.
Improvements in robotics and artificial intelligence have enabled robotics to be developed for use in a nuclear environment. However, the harsh environment and dangerous nature of the tasks pose several challenges in deploying robots. There may be some unique requirements for a nuclear application that a commercial system does not meet, such as radiation effects, the needs remote maintenance and deployment constraints. This paper reviews the main challenges that robots need to face to be deployed in a nuclear environment, examines the development and assessment processes required in the nuclear industry, and highlights the assistance that is available for developers. Due to comparable environments and operating restrictions, the development process employed by the nuclear industry has a similar structure as that employed by NASA and the ESA for space exploration. The nuclear industry has introduced a number of development support programs, such as Innovate and Game Changers, to fund and mentor developers through the initial design stages to proving viability in a representative independently assessed test environment. Robust and reliable technologies, which may also have application beyond the original nuclear application, are being successfully developed and tested, enabling robotics in making nuclear operations safer and more efficient. Additional development sources are given in the text.
In the paper, safety issues are examined in a scenario in which a robot manipulator and a human perform the same task in the same workspace. During the task execution, the human should be able to physically interact with the robot, and in this case an estimation algorithm for both interaction forces and a contact point is proposed in order to guarantee safety conditions. The method, starting from residual joint torque estimation, allows both direct and adaptive computation of the contact point and force, based on a principle of equivalence of the contact forces. At the same time, all the unintended contacts must be avoided, and a suitable post-collision strategy is considered to move the robot away from the collision area or else to reduce impact effects. Proper experimental tests have demonstrated the applicability in practice of both the post-impact strategy and the estimation algorithms; furthermore, experiments demonstrate the different behaviour resulting from the adaptation of the contact point as opposed to direct calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.