Background
MSQOL-54 is a multidimensional, widely-used, health-related quality of life (HRQOL) instrument specific for multiple sclerosis (MS). Findings from the validation study suggested that the two MSQOL-54 composite scores are correlated. Given this correlation, it could be assumed that a unique total score of HRQOL may be calculated, with the advantage to provide key stakeholders with a single overall HRQOL score. We aimed to assess how well the bifactor model could account for the MSQOL-54 structure, in order to verify whether a total HRQOL score can be calculated.
Methods
A large international database (3669 MS patients) was used. By means of confirmatory factor analysis, we estimated a bifactor model in which every item loads onto both a general factor and a group factor. Fit of the bifactor model was compared to that of single and two second-order factor models by means of Akaike information and Bayesian information criteria reduction. Reliability of the total and subscale scores was evaluated with Mc Donald’s coefficients (omega, and omega hierarchical).
Results
The bifactor model outperformed the two second-order factor models in all the statistics. All items loaded satisfactorily (≥ 0.40) on the general HRQOL factor, except the sexual function items. Omega coefficients for total score were very satisfactory (0.98 and 0.87). Omega hierarchical for subscales ranged between 0.22 to 0.57, except for the sexual function (0.70).
Conclusions
The bifactor model is particularly useful when it is intended to acknowledge multidimensionality and at the same time take account of a single general construct, as the HRQOL related to MS. The total raw score can be used as an estimate of the general HRQOL latent score.
Judicial factors are relevant in determining the length of stay in OPG. The diagnosis of schizophrenia seems to play an independent role in predicting a longer stay.
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.