AMP-activated protein kinase (AMPK), an energy-sensing enzyme, counteracts energy depletion by stimulation of energy production and limitation of energy utilization. On energy depletion, erythrocytes undergo suicidal death or eryptosis, triggered by an increase in cytosolic Ca(2+) activity ([Ca(2+)](i)) and characterized by cell shrinkage and phosphatidylserine (PS) exposure at the erythrocyte surface. The present study explored whether AMPK participates in the regulation of eryptosis. Western blotting and confocal microscopy disclosed AMPK expression in erythrocytes. [Ca(2+)](i) (Fluo3 fluorescence), cell volume (forward scatter), and PS exposure (annexin V binding) were determined by fluorescence-activated cell sorting (FACS) analysis. Glucose removal increased [Ca(2+)](i), decreased cell volume, and increased PS exposure. The AMPK-inhibitor compound C (20 microM) did not significantly modify eryptosis under glucose-replete conditions but significantly augmented the eryptotic effect of glucose withdrawal. An increase in [Ca(2+)](i) by Ca(2+) ionophore ionomycin triggered eryptosis, an effect blunted by the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mM). As compared with erythrocytes from wild-type littermates (ampk(+/+)), erythrocytes from AMPKalpha1-deficient mice (ampk(-/-)) were significantly more susceptible to the eryptotic effect of energy depletion. The ampk(-/-) mice were anemic despite excessive reticulocytosis, and they suffered from severe splenomegaly, again pointing to enhanced erythrocyte turnover. The observations disclose a critical role of AMPK in the survival of circulating erythrocytes.
ObjectiveTo delineate the phenotypic and genotypic spectrum in carriers of mitochondrial MT-ATP6 mutations in a large international cohort.MethodsWe analyzed in detail the clinical, genetical, and neuroimaging data from 132 mutation carriers from national registries and local databases from Europe, USA, Japan, and China.ResultsWe identified 113 clinically affected and 19 asymptomatic individuals with a known pathogenic MT-ATP6 mutation. The most frequent mutations were m.8993 T > G (53/132, 40%), m.8993 T > C (30/132, 23%), m.9176 T > C (30/132, 23%), and m.9185 T > C (12/132, 9%). The degree of heteroplasmy was high both in affected (mean 95%, range 20%–100%) and unaffected individuals (mean 73%, range 20%–100%). Age at onset ranged from prenatal to the age of 75 years, but almost half of the patients (49/103, 48%) became symptomatic before their first birthday. In 28 deceased patients, the median age of death was 14 months. The most frequent symptoms were ataxia (81%), cognitive dysfunction (49%), neuropathy (48%), seizures (37%), and retinopathy (14%). A diagnosis of Leigh syndrome was made in 55% of patients, whereas the classic syndrome of neuropathy, ataxia, and retinitis pigmentosa (NARP) was rare (8%).ConclusionsIn this currently largest series of patients with mitochondrial MT-ATP6 mutations, the phenotypic spectrum ranged from asymptomatic to early onset multisystemic neurodegeneration. The degree of mutation heteroplasmy did not reliably predict disease severity. Leigh syndrome was found in more than half of the patients, whereas classic NARP syndrome was rare. Oligosymptomatic presentations were rather frequent in adult-onset patients, indicating the need to include MT-ATP6 mutations in the differential diagnosis of both ataxias and neuropathies.
Eryptosis, the suicidal death of erythrocytes, is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptosis is triggered by several stress conditions including isotonic cell shrinkage (Cl- removal) and energy depletion (glucose removal). Both are effective through an increase in the cytosolic Ca2+ concentration. Phosphatidylserine-exposing erythrocytes are cleared from circulating blood. Enhanced eryptosis thus leads to anemia. Accordingly, drugs interfering with eryptosis may prove useful in the treatment of anemia. The present study explored, whether caffeine interferes with eryptosis. Erythrocyte phosphatidylserine exposure was estimated from annexin V-binding, cell volume from forward scatter and cytosolic Ca2+ activity from Fluo3 fluorescence. Under control conditions, eryptosis affected less than 5% of the erythrocytes and was not significantly modified by the presence of caffeine (50-500 µM).Glucose depletion (for 48 hours) significantly increased Fluo3 fluorescence and annexin V-binding and decreased forward scatter, effects partially reversed by caffeine (500 µM).Low Cl- solution (Cl- exchanged by gluconate for 48 hours) similarly increased annexin V-binding and decreased forward scatter, effects again reversed by caffeine (50-500 µM). In conclusion, caffeine inhibits Ca2+ entry following glucose depletion and thus counteracts eryptosis during isotonic cell shrinkage and energy depletion.
In neurons alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are heteromeric cation channels composed of different sub-units, including GluA1-GluA4. When expressed without GluA2, AMPA receptors function as Ca2+-permeable cation channels. In erythrocytes, activation of Ca2+-permeable cation channels triggers suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with subsequent exposure of phosphatidylserine at the cell surface. Activators of the channels and thus eryptosis include removal of extracellular Cl− (replaced by gluconate) and energy depletion (removal of glucose). The present study explored whether GluA1 is expressed in human erythrocytes and whether pharmacological AMPA receptor inhibition modifies Ca2+ entry and suicidal death of human erythrocytes. GluA1 protein abundance was determined by confocal microscopy, phosphatidylserine exposure was estimated from annexin V binding, cell volume from forward scatter in FACS analysis, cytosolic Ca2+ concentration from Fluo3 fluorescence and channel activity by whole-cell patch-clamp recordings. As a result, GluA1 is indeed expressed in the erythrocyte cell membrane. The AMPA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) inhibited the cation channels following Cl− removal and the eryptosis following Cl− removal or energy depletion. The present study reveals a novel action of AMPA receptor antagonists and raises the possibility that GluA1 or a pharmacologically related protein participates in the regulation of Ca2+ entry into and suicidal death of human erythrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.