When burning crack cocaine, the pyrolysis of cocaine generates anhydroecgonine methyl ester (AEME). AEME has been shown to be highly neurotoxic but its effects on cognitive function and oxidative stress are still unknown. Thus, this study investigated the effects of AEME on spatial working memory and on parameters of oxidative stress in the prefrontal cortex, hippocampus, and striatum. First, 18 well-trained rats in 8-arm radial maze (8-RM) procedures received acute intracerebroventricular (icv) administration of AEME at doses of 10, 32, or 100 μg or saline (SAL) in a counterbalanced order and were tested 5 min later in 1-h delayed tasks in the 8-RM. Secondly, separated animals received acute icv administration of AEME at doses of 10 (n = 5), 32 (n = 5), or 100 μg (n = 5) or SAL (n = 5) for analysis of advanced oxidation protein products, thiobarbituric acid, catalase, glutathione peroxidase, and superoxide dismutase. A higher number of errors were seen in the 1-h post-delay performance after AEME 32 μg and AEME 100 μg when compared to SAL. In the striatum, animals receiving AEME 100 μg icv showed increased advanced oxidation protein products levels when compared to 10 μg, and also showed increased activity of glutathione peroxidase enzyme when compared to SAL but also comparing to AEME 32 μg and AEME 10 μg. These results showed that AEME impairs long-term spatial working memory and also induces greater protein oxidation and increased levels of antioxidant enzymes in the striatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.