Currently, the pollution of soils by heavy metals is a problem of paramount relevance and requires the development of proper remediation techniques. In particular, lead is a frequently detected soil contaminant that poses adverse effects to the environment and human health. In this review, we provide an overview of the bioremediation treatments promoted by plants (phytoremediation), fungi, or bacteria that could be applied to areas polluted by lead. These restoration processes have the advantage of being environmentally friendly and cost-effective solutions that exploit plants to immobilize and extract contaminants from soil and water, and fungi and bacteria to degrade them. Phytoremediation is an extensively studied and mature practice, with many in-the-field applications where numerous plant species have been employed. In contrast, bioremediation processes promoted by fungi and bacteria are very promising but, up to now, studies have been mostly performed at a laboratory scale with only a few implementations in real-world situations; therefore, further research is needed.
In the last decades photocatalysis has become one of the most employed technologies for the implementation of the so-called Advanced Oxidation Processes (AOPs) for the removal of harmful pollutants from wastewaters. The materials identified as the best photocatalysts are transition metal oxides, in which the band structure allows charge carrier separation upon solar irradiation. The photoinduced charge carrier can thus cause oxidative and reductive redox reactions at the surface, inducing the formation of the radical species able to initiate the AOPs. Despite the great advantages of this process (non-toxic, cheap and environmentally clean), the main drawback lies in the fact that the most efficient semiconductors are only able to absorb UV irradiation, which accounts for only 5% of the total solar irradiation at the Earth’s surface and not enough to generate the required amount of electron-hole pairs. On the other hand, many efforts have been devoted to the sensitization of wide band gap transition metal oxides to visible light, which represents a higher percentage (almost 45%) in the solar electromagnetic spectrum. Among all the strategies to sensitize transition metal oxides to visible irradiation, doping with lanthanides has been less explored. In this regard, lanthanides offer a unique electronic configuration, consisting in 4f orbitals shielded by a 5s5p external shell. This occurrence, coupled with the different occupation of the localized 4f orbitals would provide an astounding opportunity to tune these materials’ properties. In this review we will focus in depth on the modification of two promising photocatalytic transition metal oxides, namely ZnO and ZrO2, with cerium, europium and erbium atoms. The aim of the work is to provide a comprehensive overview of the influence of lanthanides on the structural, optical and electronic properties of the modified materials, emphasizing the effect of the different 4f orbital occupation in the three considered doping atoms. Moreover, a large portion of the discussion will be devoted to the structural-properties relationships evidencing the improved light absorption working mechanism of each system and the resulting enhanced photocatalytic performance in the abatement of contaminants in aqueous environments.
The determination of the authenticity of extra virgin olive oils (EVOOs) has become more interesting in recent years. Italy is the first country in Europe in terms of number of Protected Designation of Origin (PDO) oils, which connects consumers to a feeling of tradition and thus to higher quality standards. This work focused on the consideration of the inorganic content as a possible marker of EVOOs. Ten vegetable oils (VOs), eight Italian EVOOs and seven not Italian EVOOs were analyzed. After pretreatment by acid mineralization, Al, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, Sb, Se and Zn were determined by ICP-OES. The electrochemical properties of a selected group of EVOOs and other vegetal oils of different botanical origin were investigated by voltammetry. Carbon paste electrodes (CPEs) were prepared. The features observed in the voltammograms reflect the reactions of electroactive compounds, which are present in the oils. A chemometric treatment of the results was performed to assess the possibility to distinguish (i) the region of provenience considering the inorganic profile; and (ii) the plant species from which each oil was obtained on the basis of the current profile registered during voltammetric analysis. Inorganic composition seems to be a useful marker for the assessment of the geographical origin of an EVOO. The EVOO-CPEs voltammetry seems to have a good ability to distinguish the plant species of origin. This method could be useful to monitor the conservation status of the oils, as the redox profile is linked to the oxidative degradation state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.