Nowadays the high nutritional value of whole grains is recognized, and there is an increasing interest in the ancient varieties for producing wholegrain food products with enhanced nutritional characteristics. Among ancient crops, einkorn could represent a valid alternative. In this work, einkorn flours were analyzed for their content in carotenoids and in free and bound phenolic acids, and compared to wheat flours. The most promising flours were used to produce conventional and sourdough fermented breads. Breads were in vitro digested, and characterized before and after digestion. The four breads having the best characteristics were selected, and the product of their digestion was used to evaluate their anti-inflammatory effect using Caco-2 cells. Our results confirm the higher carotenoid levels in einkorn than in modern wheats, and the effectiveness of sourdough fermentation in maintaining these levels, despite the longer exposure to atmospheric oxygen. Moreover, in cultured cells einkorn bread evidenced an anti-inflammatory effect, although masked by the effect of digestive fluid. This study represents the first integrated evaluation of the potential health benefit of einkorn-based bakery products compared to wheat-based ones, and contributes to our knowledge of ancient grains.
Iron deficiency is the most prevalent mineral deficiency in the world. Food fortification offers an alternative to standard oral iron therapy, which often causes unpleasant side effects. In this study, bread was fortified with either ferrous sulphate or ferrous fumarate. To prevent undesired organoleptic changes in colour, odour and taste, iron compounds were introduced in the form of microcapsules. Eight types of bread were prepared using conventional fermentation or sourdough and fortified with one of four types of microcapsule. The in vitro bioaccessibility and bioavailability of the iron were determined using the human epithelial adenocarcinoma cell line Caco-2, preceded by digestion in a dynamic gastrointestinal digester, which mimics the upper gastrointestinal tract of an adult human. The bioaccessibility of the iron after digestion of the fortified breads varied from 41.45 to 99.31%. The iron transport efficiency varied widely, from 1.16 to 13.78%. Generally, both bioaccessibility and transport efficiency were higher in the samples of breads prepared by conventional fermentation. The mRNA expression of DMT1 and IREG1, cellular iron transporters which serve as molecular markers of iron movement across the intestinal border, was not statistically significant.
The gut microbiota profile is determined by diet composition, and therefore this interaction is crucial for promoting specific bacterial growth and enhancing the health status. Red radish (Raphanus sativus L.) contains several secondary plant metabolites that can exert a protective effect on human health. Recent studies have shown that radish leaves have a higher content of major nutrients, minerals, and fiber than roots, and they have garnered attention as a healthy food or supplement. Therefore, the consumption of the whole plant should be considered, as its nutritional value may be of greater interest. The aim of this work is to evaluate the effects of glucosinolate (GSL)-enriched radish with elicitors on the intestinal microbiota and metabolic syndrome-related functionalities by using an in vitro dynamic gastrointestinal system and several cellular models developed to study the GSL impact on different health indicators such as blood pressure, cholesterol metabolism, insulin resistance, adipogenesis, and reactive oxygen species (ROS). The treatment with red radish had an influence on short-chain fatty acids (SCFA) production, especially on acetic and propionic acid and many butyrate-producing bacteria, suggesting that consumption of the entire red radish plant (leaves and roots) could modify the human gut microbiota profile toward a healthier one. The evaluation of the metabolic syndrome-related functionalities showed a significant decrease in the gene expression of endothelin, interleukin IL-6, and cholesterol transporter-associated biomarkers (ABCA1 and ABCG5), suggesting an improvement of three risk factors associated with metabolic syndrome. The results support the idea that the use of elicitors on red radish crops and its further consumption (the entire plant) may contribute to improving the general health status and gut microbiota profile.
The gut microbiota plays a key role in gastrointestinal immune and metabolic functions and is influenced by dietary composition. An in vitro protocol simulating the physiological conditions of the digestive system helps to study the effects of foods/biocompounds on gut microbiome and metabolome. The Dynamic-Colonic Gastrointestinal Digester consists of five interconnected compartments, double jacket vessels that simulate the physiological conditions of the stomach, the small intestine and the three colonic sections, which are the ascending colon, transverse colon and descending colon. Human faeces are required to reproduce the conditions and culture medium of the human colon, allowing the growth of the intestinal microbiota. After a stabilization period of 12 days, a food/biocompound can be introduced to study its modulatory effects during the next 14 days (treatment period). At the end of the stabilization and treatment period, samples taken from the colon compartments are analysed. The 16S rRNA gene analysis reveals the microbiota composition. The untargeted metabolomics analysis gives more than 10,000 features (metabolites/compounds). The present protocol allows in vitro testing of the modulatory effects of foods or biocompounds on gut microbiota composition and metabolic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.