Haptic feedback is the sensory modality to enhance the so-called “immersion”, meant as the extent to which senses are engaged by the mediated environment during virtual reality applications. However, it can be challenging to meet this requirement using conventional robotic design approaches that rely on rigid mechanical systems with limited workspace and bandwidth. An alternative solution can be seen in the adoption of lightweight wearable systems equipped with Neuromuscular Electrical Stimulation (NMES): in fact, NMES offers a wide range of different forces and qualities of haptic feedback. In this study, we present an experimental setup able to enrich the virtual reality experience by employing NMES to create in the antagonists’ muscles the haptic sensation of being loaded. We developed a subject-specific biomechanical model that estimated elbow torque during object lifting to deliver suitable electrical muscle stimulations. We experimentally tested our system by exploring the differences between the implemented NMES-based haptic feedback (NMES condition), a physical lifted object (Physical condition), and a condition without haptic feedback (Visual condition) in terms of kinematic response, metabolic effort, and participants’ perception of fatigue. Our results showed that both in terms of metabolic consumption and user fatigue perception, the condition with electrical stimulation and the condition with the real weight differed significantly from the condition without any load: the implemented feedback was able to faithfully reproduce interactions with objects, suggesting its possible application in different areas such as gaming, work risk assessment simulation, and education.
BackgroundSeveral daily living activities require people to coordinate the motion and the force produced by both arms, using their position sense and sense of effort. However, to date, the interaction in bimanual tasks has not been extensively investigated.MethodsWe focused on bimanual tasks where subjects were required: (Experiment 1) to move their hands until reaching the same position – equal hand position implied identical arm configurations in joint space - under different loading conditions;(Experiment 2) to produce the same amount of isometric force by pushing upward, with their hands placed in symmetric or asymmetric positions.The arm motions and forces required for accomplishing these tasks were in the vertical direction. We enrolled a healthy population of 20 subjects for Experiment 1 and 25 for Experiment 2. Our primary outcome was the systematic difference between the two hands at the end of each trial in terms of position for Experiment 1 and force for Experiment 2. In both experiments using repeated measure ANOVA we evaluated the effect of each specific condition, namely loading in the former case and hand configuration in the latter.ResultsIn the first experiment, the difference between the hands’ positions was greater when they were concurrently loaded with different weights. Conversely, in the second experiment, when subjects were asked to exert equal forces with both arms, the systematic difference between left and right force was not influenced by symmetric or asymmetric arm configurations, but by the position of the left hand, regardless of the right hand position. The performance was better when the left hand was in the higher position.ConclusionsThe experiments report the reciprocal interaction between position sense and sense of effort inbimanual tasks performed by healthy subjects. Apart for the intrinsic interest for a better understanding of basic sensorimotor processes, the results are also relevant to clinical applications, for defining functional evaluation and rehabilitative protocols for people with neurological diseases or conditions that impair the ability to sense and control concurrently position and force.
In daily life it is necessary to learn skills that can be applied in different tasks and different contexts. Usually these skills are acquired by observation or by direct physical training with another expert person. The critical point is to know which is the best possible way to achieve this knowledge acquisition. In this work we have proposed a collaborative environment where subjects with different levels of expertise have to interact through the use of a robotic platform. A motor skill learning algorithm has been designed in order to allow the less skilled subjects-naïves-to explore the virtual environment and to exploit the advantages of working with a skilled partner. Results show that the correct trade - off between exploration and exploitation, provided by the implemented algorithm applied during the dyadic training, allows a group of naive subjects to learn the task and generalize better the acquired skills respect to subjects trained without the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.