Fibro-adipose substitution has a double detrimental effect on the myocardium in arrhythmogenic cardiomyopathy (ACM), worsening arrhythmogenesis by creating a non-conductive substrate, and causing ventricular dysfunction leading to heart failure. Notably, to-date no etiological therapy is available. This work introduces, for the first time, the stromal cardiac compartment as a key player in ACM ventricular adipose substitution: we demonstrated that cardiac human mesenchymal stromal cells undergo adipogenic differentiation both in ACM explanted hearts and in culture through a PKP2-dependent mechanism. Cardiac mesenchymal stromal cells constitute a suitable cellular platform for future mechanistic studies and a potential target for future therapies.
The anthracycline doxorubicin (Dox) is widely used in oncology, but it may cause a cardiomyopathy with bleak prognosis that cannot be effectively prevented. The secretome of human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to significantly reduce ischemic cardiac damage. Here it is shown that, following hypoxic preconditioning, hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with mouse neonatal ventricular cardiomyocytes (mNVCM) reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is associated with decreased DNA damage, nuclear translocation of NF-kB, and upregulation of the NF-kB controlled genes, Il6 and Cxcl1, promoting mNVCM survival. Furthermore, hAFS-CM induces expression of the efflux transporter, Abcb1b, and Dox extrusion from mNVCM. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of Il6, Cxcl1 and Abcb1b, and prevention of Dox-initiated senescence and apoptosis in response to hAFS-CM. These results support the concept that hAFS are a valuable source of cardioprotective factors and lay the foundations for the development of a stem cell-based paracrine treatment of chemotherapy-related cardiotoxicity.
In line with previous findings, our results indicate that c-kit(+) cardiac progenitors are primitive stem cells endowed with multilineage differentiation ability. They further suggest a possible relationship between these cells and a heart-specific MSC population with cardiovascular commitment potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.