BackgroundImmunization with neural derived peptides (INDP) as well as scar removal—separately—have shown to induce morphological and functional improvement after spinal cord injury (SCI). In the present study, we compared the effect of INDP alone versus INDP with scar removal on motor recovery, regeneration-associated and cytokine gene expression, and axonal regeneration after chronic SCI. Scar removal was conducted through a single incision with a double-bladed scalpel along the stump, and scar renewal was halted by adding α,α′-dipyridyl.ResultsDuring the chronic injury stage, two experiments were undertaken. The first experiment was aimed at testing the therapeutic effect of INDP combined with scar removal. Sixty days after therapeutic intervention, the expression of genes encoding for TNFα, IFNγ, IL4, TGFβ, BDNF, IGF1, and GAP43 was evaluated at the site of injury. Tyrosine hydroxylase and 5-hydroxytryptamine positive fibers were also studied. Locomotor evaluations showed a significant recovery in the group treated with scar removal + INDP. Moreover; this group presented a significant increase in IL4, TGFβ, BDNF, IGF1, and GAP43 expression, but a decrease of TNFα and IFNγ. Also, the spinal cord of animals receiving both treatments presented a significant increase of serotonergic and catecholaminergic fibers as compared to other the groups. The second experiment compared the results of the combined approach versus INDP alone. Rats receiving INDP likewise showed improved motor recovery, although on a lesser scale than those who received the combined treatment. An increase in inflammation and regeneration-associated gene expression, as well as in the percentage of serotonergic and catecholaminergic fibers was observed in INDP-treated rats to a lesser degree than those in the combined therapy group.ConclusionsThese findings suggest that INDP, both alone and in combination with scar removal, could modify the non-permissive microenvironment prevailing at the chronic phase of SCI, providing the opportunity of improving motor recovery.
Background After spinal cord (SC)-injury, a non-modulated immune response contributes to the damage of neural tissue. Protective autoimmunity (PA) is a T cell mediated, neuroprotective response induced after SC-injury. Immunization with neural-derived peptides (INDP), such as A91, has shown to promote—in vitro—the production of neurotrophic factors. However, the production of these molecules has not been studied at the site of injury.ResultsIn order to evaluate these issues, we performed four experiments in adult female Sprague–Dawley rats. In the first one, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) concentrations were evaluated at the site of lesion 21 days after SC-injury. BDNF and NT-3 were significantly increased in INDP-treated animals. In the second experiment, proliferation of anti-A91 T cells was assessed at chronic stages of injury. In this case, we found a significant proliferation of these cells in animals subjected to SC-injury + INDP. In the third experiment, we explored the amount of BDNF and NT3 at the site of injury in the chronic phase of rats subjected to either SC-contusion (SCC; moderate or severe) or SC-transection (SCT; complete or incomplete). The animals were treated with INDP immediately after injury. Rats subjected to moderate contusion or incomplete SCT showed significantly higher levels of BDNF and NT-3 as compared to PBS-immunized ones. In rats with severe SCC and complete SCT, BDNF and NT-3 concentrations were barely detected. Finally, in the fourth experiment we assessed motor function recovery in INDP-treated rats with moderate SC-injury. Rats immunized with A91 showed a significantly higher motor recovery from the first week and up to 4 months after SC-injury.ConclusionsThe results of this study suggest that PA boosted by immunization with A91 after moderate SC-injury can exert its benefits even at chronic stages, as shown by long-term production of BDNF and NT-3 and a substantial improvement in motor recovery.
Background: The chronic phase of Spinal Cord (SC) injury is characterized by the presence of a hostile microenvironment that causes low activity and a progressive decline in neurological function; this phase is non-compatible with regeneration. Several treatment strategies have been investigated in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study, we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition, accompanied with implantation of mesenchymal stem cells (MSC), and immunization with neural-derived peptides (INDP). Methods: This study was divided into three subsets, all in which Sprague Dawley rats were subjected to a complete SC transection. Sixty days after injury, animals were randomly allocated into two groups for therapeutic intervention: control group and animals receiving the Comb-Tx. Sixty-three days after treatment we carried out experiments analyzing motor recovery, presence of somatosensory evoked potentials, neural regeneration-related genes, and histological evaluation of serotoninergic fibers. Results: Comb-Tx induced a significant locomotor and electrophysiological recovery. An increase in the expression of regeneration-associated genes and the percentage of 5-HT+ fibers was noted at the caudal stump of the SC of animals receiving the Comb-Tx. There was a significant correlation of locomotor recovery with positive electrophysiological activity, expression of GAP43, and percentage of 5-HT+ fibers. Conclusion: Comb-Tx promotes motor and electrophysiological recovery in the chronic phase of SC injury subsequent to a complete transection. Likewise, it is capable of inducing the permissive microenvironment to promote axonal regeneration.
Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.