This paper is devoted to the application of the modelling approach, as one of the methods for the evaluation of thermal comfort, to neighborhoods located in two cities characterized by a different climate, i.e., a Mediterranean city in southern Italy (Lecce) and a northern European city in southern Finland (Lahti). The impact of the presence of vegetation in both places is evaluated and compared, further considering alternative scenarios for thermal comfort improvement. The thermal comfort condition is expressed in terms of indices (mean radiant temperature (MRT) and predicted mean vote (PMV)). Results show that at pedestrian level the presence of vegetation lead to an improvement of thermal comfort in summer of about 2 points in both neighborhoods. This improvement is also evident observing the spatial distribution of MRT with a difference of 7 °C in the Lecce neighborhood and 3 °C in Lahti. In winter, thermal discomfort is observed in the presence of vegetation with a difference of 1.3 °C in the Lecce neighborhood and 1.5 °C in Lahti in terms of MRT. However, trees and green cover have the important potential to offset climate change impact and to make urban environments less thermally stressful. This study aims to guide urban planners towards a motivated and necessary transaction towards new green infrastructure whose effect should, however, be analyzed and investigated case by case.
This paper is devoted to the analysis of the impact of changes in olive urban forests affected by Xylella fastidiosa on ecosystem services. The focus is on microclimate and thermal comfort evaluated by two indices: the temperature of equivalent perception (TEP) and the predicted mean vote (PMV), which take into account both microclimate parameters and personal factors (heat resistance of clothing and human activity). The work has been carried out through (i) a qualitative analysis of the potential ecosystem services changes caused by temporary transition from olive groves to uncultivated soil, (ii) a study of the potential change of land use from monumental olive groves to other types of use, and (iii) a quantitative analysis on microclimate impact due to the loss of ecosystem services in two selected neighborhoods located in the Apulia region and chosen due to their proximity to the urban context. The analysis revealed that (i) direct effects on ecosystem services are principally linked with regulation functions and cultural services, (ii) a critical loss of cultural value of monumental olive groves occurred in the two neighborhoods, (iii) such a loss may lead to an increase of TEP and PMV, indicating a decrease of thermal comfort in the whole neighborhoods. Thus, it is necessary to plan the replanting policies of the use of the areas affected by X. fastidiosa not only in terms of agricultural planning but also in terms of landscape, urban planning, and human well-being.
This paper presents a conceptual framework that looks at photovoltaic systems in synergy with ecosystem services. The focus is to connect business success with social and ecological progress based on the operative concept of multifunctional land use. Such an approach attempts to harmonise the needs of the industrial processes of photovoltaic systems and the ecological and social needs of the landscape context. Different from the usual design of ground photovoltaic systems in farmlands or brownfields, a new framework is proposed, combining photovoltaic panels and vegetation. A case study is considered, applying the framework to existing photovoltaic systems in the Apulia region (southern Italy). The analysis shows how the framework has, among others, the major functions of increasing solar energy production, recycling wastewater, creating raw material for biofuel, as well as providing animal habitat and mitigating air temperature. The latter is preliminarily evaluated by means of modelling simulations performed with a computational fluid dynamics and microclimate model, ENVI-met. This approach opens up a new vision of the infrastructure design of photovoltaic systems which can produce new social and economic income.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.