Starting from the detailed description of the single-collision decoherence mechanism proposed by Adami, Hauray and Negulescu in Ref.[2], we derive a Wigner equation endowed with a decoherence term of a fairly general form. This equation is shown to contain well known decoherence models, such as the Wigner-Fokker-Planck equation, as particular cases. The effect of the decoherence mechanism on the dynamics of the macroscopic moments (density, current, energy) is illustrated by deriving the corresponding set of balance laws. The issue of large-time asymptotics of our model is addressed in the particular, although physically relevant, case of gaussian solutions. It is shown that the addition of a Caldeira-Legget friction term provides the asymptotic behaviour that one expects on the basis of physical considerations.
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship
We examine the effect of the decoherence-induced reduction of correlation length on a one-dimensional scattering problem by solving numerically the evolution equation for the Wigner function with decoherence proposed by Barletti et al. [J. Comput. Theor. Transp. 47, 209 (2018)]. The numerical solution is achieved by the splitting-scheme algorithm, suitably modified to include the decoherence term. Three cases are examined, corresponding to a reflection-dominated regime, a transmission-dominated regime, and an intermediate one.The dynamic evolution of the Wigner function is followed until the separation process of the reflected and of the transmitted packets is complete and it is observed for three different values of the correlation length. The outcomes show a broadening and flattening of the Wigner function which becomes progressively more pronounced as the correlation length is decreased. This results in a reduced reflection at low energies and in a reduced transmission at high energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.