Although branched and linear polyethylenimines (bPEIs and lPEIs) are gold standard transfectants, a systematic analysis of the effects of the preparation protocol of polyplexes and the composition of the transfection medium on their physicochemical behaviour and effectiveness in vitro have been much neglected, undermining in some way the identification of precise structure-function relationships. This work aimed to address these issues. bPEI/DNA and lPEI/DNA, prepared using two different modes of addition of reagents, gave rise to polyplexes with exactly the same chemical composition but differing in dimensions. Upon dilution in serum-free medium, the size of any kind of polyplex promptly rose over time while remained invariably stable in complete DMEM. Of note, the bigger the dimension of polyplexes (in the nano- to micrometer range), the greater their efficiency in vitro. Besides, centrifugal sedimentation of polyplexes displaying different dimensions to speed up and enhance their settling onto cells boosted transfection efficiencies. Conversely, transgene expression was significantly blunted in cells held upside-down and transfected, definitively pointing out the impact of gravitational sedimentation of polyplexes on their transfection efficiency. Overall, much more attention must be paid to the actual polyplex size that relies on the complexation conditions and the transfection medium.
The grail of gene delivery is the development of delivery vectors as effective and non-cytotoxic as possible. In this regard, there is an urgent need of new tools for the straightforward and quantitative assessment of transfection efficiency and cytotoxicity simultaneously. We herein reported the development and validation of an easy-to-use lab-on-chip platform to perform cell transfection assays for unbiased, high-throughput selection of more and more effective gene delivery vectors by using two commercially sourced lipids, Lipofectamine 2000 and FuGene 6. A single PDMS-layer platform was endowed with: i) a chaotic serial dilution generator, designed for the automatic generation of a linear lipoplex dilution (from 100% to 0% with 25% steps) independently delivered to; and ii) the downstream culture and transfection module consisting in five units, each composed of 33 serially connected and fluidically connected culture chambers for trapping small populations of ≈10 cells/chamber. In the absence of any transfectant, cells spread and duplicated up to 2 days. Besides, cells were transfected with EGFP-encoding reporter gene. The very facile visual inspection of the microdevice by means of a microscope and a semi-automated analytical method allowed pinpointing the best transfection conditions in terms of efficiency, cytotoxicity, cell doubling rates, and morphological changes at once.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.