Tourism forecasting plays a major role in tourism planning and management and it is one of the main economic activities in many countries. For this reason, it is fundamental to provide several models that allow describing and forecasting the tourist demand. International visitants who arrive at a certain tourist destination may come from countries or regions with similar or different customs and behaviours and therefore be able to present correlated arrival patterns. Based on the state-space methods with time-varying parameters, this study develops the application and comparison of univariate and multivariate models in the applied case of German and British tourist at Canary Islands (Spain). The choice of model can be conditioned by the volume of tourists from one country with respect to the other. Structural models will be used incorporating intervention and exogenous variables, among which airline seat reservations for regular flights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.