Intellectual and scientific content of the study. ABSTRACT PURPOSE:To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. METHODS:Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12.Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. RESULTS:Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. CONCLUSION:Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.
Introduction: Muscle contraction generated by electrical impulses simultaneously originating from two different neural sources may be an interesting treatment alternative for long term facial palsy. An experimental model was designed to compare single and dual innervation of the gastrocnemius muscle (GM) in rats.Methods: Fifty adult Wistar rats underwent transection of their right peroneal nerve and were divided into five groups (n = 10): control (C), tibial nerve section (TS), tibial nerve primary end-toend neurorrhaphy (PEE), tibial nerve primary repair associated with end-to-side peroneal-to-tibial nerve transfer (PRES), and tibial nerve repair by convergent end-to-end (CEE) neurorrhaphy between the proximal stumps of the tibial and peroneal nerves to the distal stump of the tibial nerve. The outcomes were assessed 12 weeks after the experiment by walking track, electromyography, GM mass index, and histomorphometric analysis of the distal tibial nerve. Results:The functional recovery of the PRES (−33.77 ± 24.13) and CEE (−42.15 ± 31.14) groups was greater (P < 0.003) than the PEE group (−80.26 ± 17.20). The CEE group (18.35 ± 7.84) showed greater amplitude (P = 0.006) than the PEE group (8.2 ± 4.64). There was no difference in the muscle mass index among the reinnervation groups (P > 0.705). Histologic analysis revealed greater (P < 0.002) axonal density in the CEE group (126.70 ± 15.01) compared to PEE (99.70 ± 12.82) and PRES (92.00 ± 19.17) groups. Conclusions:The dual innervation techniques showed earlier and greater functional recovery of the GM than did the single innervation technique. The CEE group showed a 40% higher number of regenerated axons in the distal tibial nerve stump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.