SUMMARY
The molecular determinants of spleen organogenesis and the etiology of isolated congenital asplenia (ICA), a life-threatening human condition, are unknown. We previously reported that Pbx1 deficiency causes organ growth defects including asplenia. Here, we show that mice with splenic mesenchyme-specific Pbx1 inactivation exhibit hyposplenia. Moreover, the loss of Pbx causes down-regulation of Nkx2-5 and derepression of p15Ink4b in spleen mesenchymal progenitors, perturbing the cell cycle. Removal of p15Ink4b in Pbx1 spleen-specific mutants partially rescues spleen growth. By whole-exome sequencing of a multiplex kindred with ICA, we identify a heterozygous missense mutation (P236H) in NKX2-5 showing reduced transactivation in vitro. This study establishes that a Pbx/Nkx2-5/p15 regulatory module is essential for spleen development.
Lymphoid organ stromal cells comprise different subsets whose origin remains unknown. Herein, we exploit a genetic lineage-tracing approach to show that splenic fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs), marginal reticular cells (MRCs), and mural cells, but not endothelial cells, originated from embryonic mesenchymal progenitors of the Nkx2-5+Islet1+ lineage. This lineage included embryonic mesenchymal cells with lymphoid tissue organizer (LTo) activity capable of supporting ectopic lymphoid-like structures, and a subset of resident spleen stromal cells that proliferated and regenerated the splenic stromal microenvironment following resolution of a viral infection. These findings identify progenitor cells that generate stromal diversity in spleen development and repair, and suggest the existence of multipotent stromal progenitors in the adult spleen with regenerative capacity.
Key Points
HIF-1α critically regulates the interaction of neoplastic CLL cells with the leukemic microenvironment. HIF-1α is regulated at the transcriptional level in CLL patients and correlates with CXCR4 expression.
The Prep1 homeodomain transcription factor is essential for embryonic development. 25% of hypomorphic Prep1(i/i) embryos, expressing the gene at 2% of the normal levels, survive pregnancy and live a normal-length life. Later in life, however, these mice develop spontaneous pre-tumoral lesions or solid tumors (lymphomas and carcinomas). In addition, transplantation of E14.5 fetal liver (FL) Prep1(i/i) cells into lethally irradiated mice induces lymphomas. In agreement with the above data, haploinsufficiency of a different Prep1-deficient (null) allele accelerates EmuMyc lymphoma growth. Therefore Prep1 has a tumor suppressor function in mice. Immunohistochemistry on tissue micrroarrays (TMA) generated from three distinct human cohorts comprising a total of some 1000 human tumors revealed that 70% of the tumors express no or extremely low levels of Prep1, unlike normal tissues. Our data in mice are thus potentially relevant to human cancer.
In chronic lymphocytic leukemia (CLL), the non-hematopoietic stromal microenvironment plays a critical role in promoting tumor cell recruitment, activation, survival, and expansion. However, the nature of the stromal cells and molecular pathways involved remain largely unknown. Here, we demonstrate that leukemic B lymphocytes induce the activation of retinoid acid synthesis and signaling in the microenvironment. Inhibition of RA-signaling in stromal cells causes deregulation of genes associated with adhesion, tissue organization and chemokine secretion including the B-cell chemokine CXCL13. Notably, reducing retinoic acid precursors from the diet or inhibiting RA-signaling through retinoid-antagonist therapy prolong survival by preventing dissemination of leukemia cells into lymphoid tissues. Furthermore, mouse and human leukemia cells could be distinguished from normal B-cells by their increased expression of Rarγ2 and RXRα, respectively. These findings establish a role for retinoids in murine CLL pathogenesis, and provide new therapeutic strategies to target the microenvironment and to control disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.