Abstract. Given a smooth curve defined over a field k that admits a non-singular plane model over k, a fixed separable closure of k, it does not necessarily have a non-singular plane model defined over the field k. We determine under which conditions this happens and we show an example of such phenomenon: a curve defined over k admitting plane models but none defined over k. Now, even assuming that such a smooth plane model exists, we wonder about the existence of non-singular plane models over k for its twists. We characterize twists possessing such models and we also show an example of a twist not admitting any non-singular plane model over k. As a consequence, we get explicit equations for a non-trivial Brauer-Severi surface. Finally, we obtain a theoretical result to describe all the twists of smooth plane curves with cyclic automorphism group having a model defined over k whose automorphism group is generated by a diagonal matrix.
Let C be a smooth, absolutely irreducible genus 3 curve over a number field M . Suppose that the Jacobian of C has complex multiplication by a sextic CM-field K. Suppose further that K contains no imaginary quadratic subfield. We give a bound on the primes p of M such that the stable reduction of C at p contains three irreducible components of genus 1.
We determine the limiting distribution of the normalized Euler factors of an abelian threefold A defined over a number field k when A is Q-isogenous to the cube of a CM elliptic curve defined over k. As an application, we classify the Sato-Tate distributions of the Jacobians of twists of the Fermat and Klein quartics, obtaining 54 and 23, respectively, and 60 in total. We encounter a new phenomenon not visible in dimensions 1 or 2: the limiting distribution of the normalized Euler factors is not determined by the limiting distributions of their coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.