Objective: This study investigated whether blood concentrations of leptin, ghrelin, and adiponectin are affected by acute total sleep deprivation in a sex-and weightspecific manner.Methods: A total of 44 participants (mean age 24.9 years; 20 women; 19 with obesity) participated in a crossover design, including one night of sleep deprivation and one night of sleep in the laboratory. After each night, fasting blood was collected.Results: After sleep deprivation, fasting levels of leptin were lower (mean [SE], vs.
Background: Acute sleep loss increases the brain's reactivity toward positive and negative affective stimuli. Thus, despite well-known reduced attention due to acute sleep loss, we hypothesized that humans would gaze longer on happy, angry, and fearful faces than neutral faces when sleep-deprived. We also examined if facial expressions are differently perceived after acute sleep loss. Methods: In the present, within-subjects study, 45 young adults participated in one night of total sleep deprivation and one night with an 8-hour sleep opportunity. On the morning after each night, an eye tracker was used to measure participants' time spent fixating images of happy, angry, fearful, and neutral faces. Participants also evaluated faces' attractiveness, trustworthiness, and healthiness on a 100-mm visual analog scale. Results: Following sleep loss, participants struggled more fixating the faces than after sleep. The decrease in total fixation duration ranged from 6.3% to 10.6% after sleep loss (P<0.001). Contrary to our hypothesis, the reduction in total fixation duration occurred irrespective of the displayed emotion (P=0.235 for sleep*emotion interaction) and was also present for the upper (P<0.001) but not the lower part of the faces (except for the lower part of angry faces). Overall, faces were evaluated as less trustworthy (−2.6 mm) and attractive (−3.6 mm) after sleep loss (p<0.05). Discussion: Facial expressions are crucial for social interactions. Thus, spending less time fixating on faces after acute sleep loss may come along with several problems for social interactions, eg, inaccurate and delayed judgment of the emotional state of others. In addition, more negative social impressions of others may lead to social withdrawal in sleep-deprived humans.
Summary Weighted blankets have emerged as a potential non‐pharmacological intervention to ease conditions such as insomnia and anxiety. Despite a lack of experimental evidence, these alleged effects are frequently attributed to a reduced activity of the endogenous stress systems and an increased release of hormones such as oxytocin and melatonin. Thus, the aim of the present in‐laboratory crossover study (26 young and healthy participants, including 15 men and 11 women) was to investigate if using a weighted blanket (~12% of body weight) at bedtime resulted in higher salivary concentrations of melatonin and oxytocin compared with a light blanket (~2.4% of body weight). We also examined possible differences in salivary concentrations of the stress hormone cortisol, salivary alpha‐amylase activity (as an indicative metric of sympathetic nervous system activity), subjective sleepiness, and sleep duration. When using a weighted blanket, the 1 hour increase of salivary melatonin from baseline (i.e., 22:00) to lights off (i.e., 23:00) was about 32% higher (p = 0.011). No other significant differences were found between the blanket conditions, including subjective sleepiness and total sleep duration. Our study is the first to suggest that using a weighted blanket may result in a more significant release of melatonin at bedtime. Future studies should investigate whether the stimulatory effect on melatonin secretion is observed on a nightly basis when frequently using a weighted blanket over weeks to months. It remains to be determined whether the observed increase in melatonin may be therapeutically relevant for the previously described effects of the weighted blanket on insomnia and anxiety.
Night shift work impairs vigilance performance, reduces the ability to stay awake, and compromises brain health. To investigate if the magnitude of these adverse night shift work effects differs between sexes and weight groups, 47 men and women with either normal weight or obesity participated in one night of sleep and one night of total sleep loss. During the night of sleep loss, participants’ subjective sleepiness, vigilance performance, and ability to stay awake during 2-min quiet wake with eyes closed were repeatedly assessed. In addition, blood was collected in the morning after sleep loss and sleep to measure central nervous system (CNS) health biomarkers. Our analysis showed that women were sleepier during the night of sleep loss (P < 0.05) and spent more time in microsleep during quiet wake testing (P < 0.05). Finally, higher blood levels of neurofilament light chain, a biomarker of axonal damage, were found among women in the morning after sleep loss (P < 0.002). Compared with normal-weight subjects, those with obesity were more prone to fall asleep during quiet wake (P < 0.05) and exhibited higher blood levels of the CNS health biomarker pTau181 following sleep loss (P = 0.001). Finally, no differences in vigilance performance were noted between the sex and weight groups. Our findings suggest that the ability to stay awake during and the CNS health biomarker response to night shift work may differ between sexes and weight groups. Follow-up studies must confirm our findings under more long-term night shift work conditions.
Meal timing has significant effects on health. However, whether meal timing is associated with the risk of developing and dying of cancer is not well-researched in humans. In the present study, we used data from 941 community-dwelling men aged 71 years who participated in the Uppsala Longitudinal Study of Adult Men to examine the association of meal timing with cancer morbidity and fatal cancer. The following meal timing variables were derived from 7-day food diaries: (i) daily eating duration, i.e., the time between the first and last eating episode of an arbitrary day; (ii) the calorically weighted midpoint of the daily eating interval, a proxy of when the eating window typically occurs during an arbitrary day; and (iii) the day-to-day variability in the timing of eating. We also assessed the reported daily energy intake reliability using the Goldberg method. During a mean observational period of 13.4 years, 277 men (29.4%) were diagnosed with cancer. Furthermore, 191 men (20%) died from cancer during 14.7 years of follow-up. As shown by Cox regression adjusted for potential confounders (e.g., smoking status and daily energy intake), men with reliable dietary reports whose daily eating intervals were on average 13 h long had a 2.3-fold greater fatal cancer risk than men whose daily eating windows were on average about 11 h long. We also found that men with an average day-to-day variability in the timing of eating of 48 to 74 min had a 2- to 2.2-fold higher fatal cancer risk than those with the lowest average day-to-day variability in the timing of eating (i.e., 23 min). No clear associations were found in men with inadequate dietary reports, emphasizing the need to consider the reliability of dietary records in nutritional epidemiology. To fully unlock its potential, studies are needed to test whether recommendations to time-restrict the 24-h eating interval and reduce day-to-day variability in the timing of eating can meaningfully alter the risk of death due to cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.