Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint.
Post-transcriptional regulation of mRNA by the RNA binding protein HuR (Elavl1) is required in B cells for the germinal centre reaction and for the production of class-switched antibodies in response to T-independent antigens. Transcriptome-wide examination of RNA isoforms, abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interaction, revealed that HuR-dependent mRNA splicing affects hundreds of transcripts including the dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase complex (αKGDH). In the absence of HuR, defective mitochondrial metabolism results in high amounts of reactive oxygen species and B cell death. Our study shows how post-transcriptional processes control the balance of energy metabolism required for B cell proliferation and differentiation.
Antibody affinity maturation occurs in germinal centres (GC) where B
cells cycle between the light zone (LZ) and the dark zone. In the LZ GC B cells
bearing immunoglobulins with the highest affinity for antigen receive positive
selection signals from T helper cells that promotes their rapid proliferation.
Here we show that the RNA binding protein PTBP1 is necessary for the progression
of GC B cells through late S-phase of the cell cycle and for affinity
maturation. PTBP1 is required for the proper expression of the c-MYC-dependent
gene program induced in GC B cells receiving T cell help and directly regulates
the alternative splicing and abundance of transcripts increased during positive
selection to promote proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.