Stochastic volatility models of the Ornstein-Uhlenbeck type possess authentic capability of capturing some stylized features of financial time series. In this work we investigate this class of models from the viewpoint of derivative asset analysis. We discuss topics related to the incompleteness of this type of markets. In particular, for structure preserving martingale measures, we derive the price of simple European-style contracts in closed form. Furthermore, the range of viable prices is determined and an empirical application is presented.
Stochastic volatility models of the Ornstein-Uhlenbeck type possess authentic capability of capturing some stylized features of financial time series. In this work we investigate this class of models from the viewpoint of derivative asset analysis. We discuss topics related to the incompleteness of this type of markets. In particular, for structure preserving martingale measures, we derive the price of simple European-style contracts in closed form. Furthermore, the range of viable prices is determined and an empirical application is presented.
This paper reviews and puts in context some of our recent work on stochastic volatility modelling for financial economics. Here our main focus is on: (i) the relationship between subordination and stochastic volatility, (ii) OU based volatility models, (iii) exact option pricing, (iv) realised power variation and realised variance, (v) building multivariate models.
In reduced form default models, the instantaneous default intensity is the classical modelling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature tends to specify the cumulative hazard process directly. Within this framework we present a new model class where cumulative hazards are described by self-similar additive processes, also known as Sato processes. Furthermore, we analyse specifications obtained via a simple deterministic time change of a homogeneous Levy process. While the processes in these two classes share the same average behaviour over time, the associated intensities exhibit very different properties. Concrete specifications are calibrated to data on all the single names included in the iTraxx Europe index. The performances are compared with those of the classical Cox-Ingersoll-Ross intensity and a recently proposed class of intensity models based on Ornstein-Uhlenbeck-type processes. It is shown that the time-inhomogeneous Levy models achieve comparable calibration errors with fewer parameters and with more stable parameter estimates over time. However, the calibration performance of the Sato processes and the time-change specifications are practically indistinguishable.Credit default swap, reduced form model, Sato process, time-changed Levy process, cumulative hazard,
We consider a tractable affine stochastic volatility model that generalizes the seminal Heston model by augmenting it with jumps in the instantaneous variance process. In this framework, we consider both realized variance options and VIX options, and we examine the impact of the distribution of jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic behavior of the implied volatility of variance for small and large strikes. In particular, by selecting alternative jump distributions, we show that one can obtain fundamentally different shapes of the implied volatility of variance smile-some clearly at odds with the upward-sloping volatility skew observed in variance markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.