In this article we describe two new characterizations of freeness for hyperplane arrangements via the study of the generic initial ideal and of the sectional matrix of the Jacobian ideal of arrangements. DI
In this paper we recall the object sectional matrix which encodes the Hilbert functions of successive hyperplane sections of a homogeneous ideal. We translate and/or reprove recent results in this language. Moreover, some new results are shown about their maximal growth, in particular a new generalization of Gotzmann's Persistence Theorem, the presence of a GCD for a truncation of the ideal, and applications to saturated ideals.
Given a zero-dimensional ideal I in a polynomial ring, many computations start by finding univariate polynomials in I. Searching for a univariate polynomial in I is a particular case of considering the minimal polynomial of an element in P/I. It is well known that minimal polynomials may be computed via elimination, therefore this is considered to be a "resolved problem". But being the key of so many computations, it is worth investigating its meaning, its optimization, its applications (e.g. testing if a zero-dimensional ideal is radical, primary or maximal). We present efficient algorithms for computing the minimal polynomial of an element of P/I. For the specific case where the coefficients are in Q, we show how to use modular methods to obtain a guaranteed result. We also present some applications of minimal polynomials, namely algorithms for computing radicals and primary decompositions of zero-dimensional ideals, and also for testing radicality and maximality.
In this paper, we study the class of free hyperplane arrangements. Specifically, we investigate the relations between freeness over a field of finite characteristic and freeness over Q.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.