Birds face exceptionally high energy demands during their flight. One visible feature of some species is alternating between flapping and gliding, which should allow them to save energy. To date, there is no empirical evidence of an energetic benefit to this. To understand the physiology behind the strategy, we equipped hand-raised Northern Bald Ibises (Geronticus eremita) with data loggers during human-guided migration. We monitored the position of the birds, wingbeats, overall dynamic body acceleration (ODBA), and heart rates as a proxy for energy expenditure. The energy expenditure was significantly affected by the length of flapping and gliding bouts. A pronounced decrease in heart rate was measured after already 1 s of gliding. Additionally, the heart rate at flapping bouts up to 30 s increased steadily but stabilized thereafter. The gilding proportion during intermittent flight affected the energy saving compared to continuous flapping. At a gliding proportion of about 20%, we measured a maximum of 11% saving based on heart rate measurement. At higher gliding proportions, the additional energy saving was negligible. Furthermore, as during flight, not all energy is used for mechanical work, we found a greater decrease rate of ODBA at different gliding proportions compared to heart rate. Nevertheless, the combination of the two methods is essential to determine birds’ movement and energy expenditure. This study provides empirical evidence that intermittent flight is energetically beneficial and can reduce the high costs of flights.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Video recordings are useful tools for advancing our understanding of animal movements and behaviour. Over the past decades, a burgeoning area of behavioural research has put forward innovative methods to investigate animal movement using video analysis, which include motion capture and machine learning algorithms. These tools are particularly valuable for the study of elaborate and complex motor behaviours, but can be challenging to use. We focus in particular on elaborate courtship displays, which commonly involve rapid and/or subtle motor patterns. Here, we review currently available tools and provide hands-on guidelines for implementing these techniques in the study of avian model species. In the first part of this paper, we suggest a set of possible strategies and solutions for video acquisition based on different model systems, environmental conditions, and time or financial budget. The second section helps navigate the available options for video analysis and illustrates how different analytical tools can be chosen to draw inference about animal motor performance. Finally, the third section describes in more detail how these guidelines have been implemented to study courtship behaviour in golden-collared manakins (Manacus vitellinus).
The investigation of the emergent collective behaviour in flying birds is a challenging task, yet it has always fascinated scientists from different disciplines. In the attempt of studying and modelling line formation, we collected high-precision position data of 29 free-flying northern bald ibises (
Geronticus eremita
) using Global Navigation Satellite System loggers, to investigate whether the spatial relationships within a flock can be explained by birds maintaining energetically advantageous positions. Specifically, we exploited domain knowledge and available literature information to model by means of fuzzy logic where the air vortices lie behind a flying bird. This allowed us to determine when a leading bird provides the upwash to a following bird, reducing its overall effort. Our results show that the fuzzy model allows to easily distinguish which bird is flying in the wake of another individual, provides a clear indication about flying flock dynamics and also gives a hint about birds' social relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.