Disruptions of biological rhythms are known to be associated with depressive disorders, suggesting that abnormalities in the molecular clock may contribute to the development of these disorders. These mechanisms have been extensively characterized in the suprachiasmatic nucleus, but little is know about the role exerted by individual clock genes in brain structures that are important for depressive disorders. Using the chronic mild stress model we found a significant reduction of BMAL1 and CLOCK protein levels in the nuclear compartment of the prefrontal cortex of CMS rats, which was paralleled by a down-regulation of the expression of several target genes, including Pers and Crys but also Reverbβ and Pparα. Interestingly, chronic treatment with the multi receptor modulator lurasidone (3mg/kg for 5 weeks) was able to normalize the molecular changes induced by CMS exposure in prefrontal cortex, but it was also able to regulate some of these genes within the hippocampus. We believe that changes in clock genes expression after CMS exposure may contribute to the disturbances associated with depressive disorders and that the ability of chronic lurasidone to normalize such alterations may be relevant for its therapeutic properties in ameliorating functions that are deteriorated in patients with major depression and other stress-related disorders.
Mutations in proline-rich transmembrane protein 2 (PRRT2) have been recently identified as the leading cause of a clinically heterogeneous group of neurological disorders sharing a paroxysmal nature, including paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. To date, studies aimed at understanding its physiological functions in neurons have mainly focused on its ability to regulate neurotransmitter release and neuronal excitability. Here, we show that PRRT2 expression in non-neuronal cell lines inhibits cell motility and focal adhesion turnover, increases cell aggregation propensity, and promotes the protrusion of filopodia, all processes impinging on the actin cytoskeleton. In primary hippocampal neurons, PRRT2 silencing affects the synaptic content of filamentous actin and perturbs actin dynamics. This is accompanied by defects in the density and maturation of dendritic spines. We identified cofilin, an actin-binding protein abundantly expressed at the synaptic level, as the ultimate effector of PRRT2. Indeed, PRRT2 silencing unbalances cofilin activity leading to the formation of cofilin-actin rods along neurites. The expression of a cofilin phospho-mimetic mutant (cof-S3E) is able to rescue PRRT2-dependent defects in synapse density, spine number and morphology, but not the alterations observed in neurotransmitter release. Our data support a novel function of PRRT2 in the regulation of the synaptic actin cytoskeleton and in the formation of synaptic contacts.
Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). The ex vivo methodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.
At molecular levels, it has been shown that aging is associated with alterations in neuroplastic mechanisms. In this study, it was examined if the altered expression of neurotrophins observed in aged rats could be corrected by a chronic treatment with S 47445 (1-3-10mg/kg, p.o.), a novel selective positive allosteric modulator of the AMPA receptors. Both the mRNA and the protein levels of the neurotrophins Bdnf, NT-3 and Ngf were specifically measured in the prefrontal cortex and hippocampus (ventral and dorsal) of aged rats. It was found that 2-week-treatment with S 47445 corrected the age-related deficits of these neurotrophins and/or positively modulated their expression in comparison to vehicle aged rats in the range of procognitive and antidepressant active doses in rodents. Collectively, the ability of S 47445 to modulate various neurotrophins demonstrated its neurotrophic properties in two major brain structures involved in cognition and mood regulation suggesting its therapeutic potential for improving several diseases such as Alzheimer's disease and/or Major Depressive Disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.