The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis, consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an influence on features estimation are discussed, highlighting the need of more standardized image acquisition and reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations, texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete picture of the full potential of this technique.
Purpose: Despite its increasing application, radiomics has not yet demonstrated a solid reliability, due to the difficulty in replicating analyses. The extraction of radiomic features from clinical MRI (T1w/T2w) presents even more challenges because of the absence of well-defined units (e.g. HU). Some preprocessing steps are required before the estimation of radiomic features and one of this is the intensity normalization, that can be performed using different methods. The aim of this work was to evaluate the effect of three different normalization techniques, applied on T2w-MRI images of the pelvic region, on radiomic features reproducibility. Methods: T2w-MRI acquired before (MRI1) and 12 months after radiotherapy (MRI2) from 14 patients treated for prostate cancer were considered. Four different conditions were analyzed: (a) the original MRI (No_Norm); (b) MRI normalized by the mean image value (Norm_Mean); (c) MRI normalized by the mean value of the urine in the bladder (Norm_ROI); (d) MRI normalized by the histogram-matching method (Norm_HM). Ninety-one radiomic features were extracted from three organs of interest (prostate, internal obturator muscles and bulb) at both time-points and on each image discretized using a fixed bin-width approach and the difference between the two time-points was calculated (Dfeature). To estimate the effect of normalization methods on the reproducibility of radiomic features, ICC was calculated in three analyses: (a) considering the features extracted on MRI2 in the four conditions together and considering the influence of each method separately, with respect to No_Norm; (b) considering the features extracted on MRI2 in the four conditions with respect to the inter-observer variability in region of interest (ROI) contouring, considering also the effect of the discretization approach; (c) considering Dfeature to evaluate if some indices can recover some consistency when differences are calculated. Results: Nearly 60% of the features have shown poor reproducibility (ICC < 0.5) on MRI2 and the method that most affected features reliability was Norm_ROI (average ICC of 0.45). The other two methods were similar, except for first-order features, where Norm_HM outperformed Norm_Mean (average ICC = 0.33 and 0.76 for Norm_Mean and Norm_HM, respectively). In the inter-observer setting, the number of reproducible features varied in the three structures, being higher in the prostate than in the penile bulb and in the obturators. The analysis on Dfeature highlighted that more than 60% of the features were not consistent with respect to the normalization method and confirmed the high reproducibility of the features between Norm_Mean and Norm_HM, whereas Norm_ROI was the less reproducible method. Conclusions:The normalization process impacts the reproducibility of radiomic features, both in terms of changes in the image information content and in the inter-observer setting. Among the considered methods, Norm_Mean and Norm_HM seem to provide the most reproducible features with respect to the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.