The central enzyme responsible for human cytomegalovirus (HCMV) DNA synthesis is a virally encoded DNA polymerase that includes a catalytic subunit, UL54, and a homodimeric accessory subunit, UL44, the presumptive HCMV DNA polymerase processivity factor. The structure of UL44 is similar to that of the eukaryotic processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous other proteins required for faithful DNA replication. We sought to determine whether, like PCNA, UL44 is capable of interacting with multiple DNA replication proteins and, if so, whether these proteins bind UL44 at the site corresponding to where multiple proteins bind to PCNA. Initially, several proteins, including the viral DNA replication factors UL84 and UL57, were identified by mass spectrometry in immunoprecipitates of UL44 from infected cell lysate. The association of UL44/UL84, but not UL44/UL57, was confirmed by reciprocal coimmunoprecipitation of these proteins from infected cell lysates and was resistant to nuclease treatment. Yeast two-hybrid analyses demonstrated that the substitution of residues in UL44 that prevent UL44 homodimerization or abrogate the binding of UL54 to UL44 do not abrogate the UL44/UL84 interaction. Reciprocal glutathione-S-transferase (GST) pulldown experiments using bacterially expressed UL44 and UL84 confirmed these results and, further, demonstrated that a UL54-derived peptide that competes with UL54 for UL44 binding does not prevent the association of UL84 with UL44. Taken together, our results strongly suggest that UL44 and UL84 interact directly using a region of UL44 different from the UL54 binding site. Thus, UL44 can bind interacting replication proteins using a mechanism different from that of PCNA.Protein-protein interactions orchestrate the process of DNA synthesis. Most replicative DNA polymerases include at least two interacting components, a catalytic subunit responsible for the polymerization of DNA and a processivity subunit. The processivity subunit of the polymerase holds the catalytic subunit on DNA while DNA polymerization takes place, thereby permitting long-chain DNA synthesis. One of the best-described processivity factors is proliferating cell nuclear antigen (PCNA) of eukaryotic DNA polymerases ␦ and ε (23, 26). PCNA is a head-to-tail homotrimer which, with the aid of clamp loader proteins, forms a toroidal ring around DNA, creating an internal channel of sufficient diameter to accommodate the DNA duplex (15). Studies of PCNA by numerous laboratories have described a large number of interactions between PCNA and proteins that participate in and abet DNA synthesis (reviewed in references 23 and 26). Of particular interest is that many of these proteins bind PCNA at a specific site, inserting a conserved hydrophobic domain (a PCNA-interacting protein [PIP] box) into a hydrophobic pocket lying beneath an interdomain connector loop of PCNA. PIP box proteins bind and dissociate from PCNA at different times during DNA replication when the need for their funct...
The mechanisms of processivity factors of herpesvirus DNA polymerases remain poorly understood. The proposed processivity factor for human cytomegalovirus DNA polymerase is a DNA-binding protein, UL44. Previous findings, including the crystal structure of UL44, have led to the hypothesis that UL44 binds DNA as a dimer via lysine residues. To understand how UL44 interacts with DNA, we used filter-binding and electrophoretic mobility shift assays and isothermal titration calorimetry (ITC) analysis of binding to oligonucleotides. UL44 bound directly to double-stranded DNA as short as 12 bp, with apparent dissociation constants in the nanomolar range for DNAs >18 bp, suggesting a minimum DNA length for UL44 interaction. UL44 also bound single-stranded DNA, albeit with lower affinity, and for either single- or double-stranded DNA, there was no apparent sequence specificity. ITC analysis revealed that UL44 binds to duplex DNA as a dimer. Binding was endothermic, indicating an entropically driven process, likely due to release of bound ions. Consistent with this hypothesis, analysis of the relationship between binding and ionic strength indicated that, on average, 4 ± 1 monovalent ions are released in the interaction of each monomer of UL44 with DNA. The results taken together reveal interesting implications for how UL44 may mediate processivity.
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.
We identified a 6-aminoquinolone compound, WC5, that inhibits human cytomegalovirus (HCMV) replication with a selectivity index of ϳ500. WC5 also showed activity against drug-resistant HCMV strains. In contrast, it did not significantly affect the replication of human herpesvirus 6 and 8 and was ϳ10-fold less active against murine cytomegalovirus. Thus, WC5 may represent a lead for the development of new, potent, and selective anti-HCMV compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.