Corpora amylacea are structures of unknown origin and function that appear with age in human brains and are profuse in selected brain areas in several neurodegenerative conditions. They are constituted of glucose polymers and may contain waste elements derived from different cell types. As we previously found on particular polyglucosan bodies in mouse brain, we report here that corpora amylacea present some neo-epitopes that can be recognized by natural antibodies, a certain kind of antibodies that are involved in tissue homeostasis. We hypothesize that corpora amylacea, and probably some other polyglucosan bodies, are waste containers in which deleterious or residual products are isolated to be later eliminated through the action of the innate immune system. In any case, the presence of neo-epitopes on these structures and the existence of natural antibodies directed against them could become a new focal point for the study of both age-related and degenerative brain processes.
Corpora amylacea(CA) in the human brain are granular bodies formed by polyglucosan aggregates that amass waste products of different origins. They are generated by astrocytes, mainly during aging and neurodegenerative conditions, and are located predominantly in periventricular and subpial regions. This study shows that CA are released from these regions to the cerebrospinal fluid and are present in the cervical lymph nodes, into which cerebrospinal fluid drains through the meningeal lymphatic system. We also show that CA can be phagocytosed by macrophages. We conclude that CA can act as containers that remove waste products from the brain and may be involved in a mechanism that cleans the brain. Moreover, we postulate that CA may contribute in some autoimmune brain diseases, exporting brain substances that interact with the immune system, and hypothesize that CA may contain brain markers that may aid in the diagnosis of certain brain diseases.
Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTG ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.
Corpora amylacea (CA) are polyglucosan bodies that accumulate in the human brain during ageing and are also present in large numbers in neurodegenerative conditions. Theories regarding the function of CA are regularly updated as new components are described. In previous work, we revealed the presence of some neo-epitopes in CA and the existence of some natural IgM antibodies directed against these neo-epitopes. We also noted that these neo-epitopes and IgMs were the cause of false staining in CA immunohistochemical studies, and disproved the proposed presence of β-amyloid peptides and tau protein in them. Here we extend the list of components erroneously attributed to CA. We show that, contrary to previous descriptions, CA do not contain GFAP, S100, AQP4, NeuN or class III β-tubulin, and we question the presence of other components. Nonetheless, we observe that CA contains ubiquitin and p62, both of them associated with processes of elimination of waste substances, and also glycogen synthase, an indispensable enzyme for polyglucosan formation. In summary, this study shows that it is imperative to continue reviewing previous studies about CA but, more importantly, it shows that the vision of CA as structures involved in protective or cleaning mechanisms remains the most consistent theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.