The ubiquitin proteasome pathway was discovered in the 1980s to be a central component of the cellular protein degradation machinery with essential functions in homeostasis, which include preventing the accumulation of misfolded or deleterious proteins. Cancer cells produce proteins that promote both cell survival and proliferation, and/or inhibit mechanisms of cell death. This notion set the stage for preclinical testing of proteasome inhibitors as a means to shift this fine equilibrium towards cell death. Since the late 1990s, clinical trials have been conducted for a variety of malignancies, leading to regulatory approvals of proteasome inhibitors to treat multiple myeloma and mantle cell lymphoma. First-generation and second-generation proteasome inhibitors can elicit deep initial responses in patients with myeloma, in whom these drugs have dramatically improved outcomes, but relapses are frequent and acquired resistance to treatment eventually emerges. In addition, promising preclinical data obtained with proteasome inhibitors in models of solid tumours have not been confirmed in the clinic, indicating a role for primary resistance. Investigation of the mechanisms of resistance is, therefore, essential to further maximize the utility of this class of drugs in the era of personalized medicine. Herein, we discuss the advances and challenges resulting from the introduction of proteasome inhibitors into the clinic.
Carfilzomib-lenalidomide-dexamethasone therapy is tolerable and demonstrates high rates of MRD negativity in NDMM, translating into longer progression-free survival in patients achieving MRD negativity. Carfilzomib-lenalidomide-dexamethasone therapy also demonstrates efficacy in high-risk SMM.
Multiple myeloma (MM) is consistently preceded by precursor conditions recognized clinically as monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). We interrogate the whole genome sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor condition (n = 15) are characterized by later initiation in the patient’s life and by the absence of myeloma defining genomic events including: chromothripsis, templated insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational activity. This data provides evidence that WGS can be used to recognize two biologically and clinically distinct myeloma precursor entities that are either progressive or stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.