During the past decade, diverse types of barcode have been designed in order to track living cells in vivo or in vitro, but none of them offer the possibility to follow an individual cell up to ten or more days. Using silicon microtechnologies a barcode sufficiently small to be introduced into a cell, yet visible and readily identifiable under an optical microscope, is designed. Cultured human macrophages are able to engulf the barcodes due to their phagocytic ability and their viability is not affected. The utility of the barcodes for cell tracking is demonstrated by following individual cells for up to ten days in culture and recording their locomotion. Interestingly, silicon microtechnology allows the mass production of reproducible codes at low cost with small features (bits) in the micrometer range that are additionally biocompatible.
Here we present a protocol for analyzing cell cultures using a photonic lab-on-a-chip (PhLoC). By using a broadband light source and a spectrometer, the spectrum of a given cell culture with an arbitrary population is acquired. The PhLoC can work in three different regimes: light scattering (using label-free cells), light scattering plus absorption (using stained cells) and, by subtraction of the two former regimes, absorption (without the scattering band). The acquisition time of the PhLoC is ∼30 ms. Hence, it can be used for rapid cell counting, dead/live ratio estimation or multiparametric measurements through the use of different dyes. The PhLoC, including microlenses, micromirrors and microfluidics, is simply fabricated in a single-mask process (by soft lithographic methods) using low-cost materials. Because of its low cost it can easily be implemented for point-of-care applications. From raw substrates to final results, this protocol can be completed in 29 h.
Little information exists on the toxicological hazards associated to organo-modified clays. We evaluated the cytotoxicity of a series of pristine and organo-modified nanoclays in different cell lines. The calculated IC50 values for cell viability ranged from 1.4 to 47 µg/mL for the six organoclays used and were above 100 µg/mL for the pristine nanoclays. The IC50 values of the organoclays were driven by the proportion and structure of the quaternary ammonium compound used as surface organic modifier. No differences in cell toxicity were observed between the large and small-sized (additional milling step) nanoclay batches, although their size differences related mostly to upper range of the size distribution. Despite their lower toxicity, pristine nanoclays induced apoptosis and were found in cytoplasmic vesicles of exposed cells. Organoclays were also found in cytoplasmic vesicles, although the size of the agglomerates was larger and the efficiency of uptake was considerably lower.
Microchips can be fabricated, using semiconductor technologies, at microscopic level to be introduced into living cells for monitoring of intracellular parameters at a single cell level. As a first step towards intracellular chips development, silicon and polysilicon microparticles of controlled shape and dimensions were fabricated and introduced into human macrophages and mouse embryos by phagocytosis and microinjection, respectively. Microparticles showed to be non-cytotoxic for macrophages and were found to be localized mainly inside early endosomes, in tight association with endosomal membrane, and more rarely in acidic compartments. Embryos with microinjected microparticles developed normally to the blastocyst stage, confirming the non-cytotoxic effect of the particles. In view of these results silicon and polysilicon microparticles can serve as the frame for future intracellular chips development and this technology opens the possibility of real complex devices to be used as sensors or actuators inside living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.