The chromosomal polymorphism of seven Mediterranean populations of Drosophila subobscura has been compared with that of the same populations collected 26 to 35 years ago. Significant latitudinal clines for the frequencies of AST, EST, OST, and UST chromosomal arrangements have been detected in the old and new samples. Standard gene arrangements are frequent in the north and decrease in frequency towards the south. Significant negative regression coefficients between latitude and transformed frequency have also been observed for the more frequent nonstandard gene arrangements. The pattern of the clines is practically the same in the old and new collections. Furthermore, the frequencies of gene arrangements of all chromosomes have changed significantly during this period in a systematic way: an increase in the frequency of those arrangements typical of southern latitudes and a decrease for those more common in northern latitudes is observed in all populations. These changes could be due to climatic factors that are correlated with latitude, making the chromosomal composition of this species more “southern.”
Biologists have long debated the speed, uniformity, and predictability of evolutionary change. However, evaluating such patterns on a geographic scale requires time-series data on replicate sets of natural populations. Drosophila subobscura has proven an ideal model system for such studies. This fly is broadly distributed in the Old World, but was introduced into both North and South America just over two decades ago and then spread rapidly. Rapid, uniform, and predictable evolution would be demonstrated if the invading flies evolved latitudinal clines that progressively converged on those of the native populations. Evolutionary geneticists quickly capitalized on this opportunity to monitor evolutionary dynamics. Just a few years after the introduction, they surveyed chromosomal inversion frequencies in both North and South America. On both continents they detected incipient latitudinal clines in chromosome inversion frequencies that almost always had the same sign with latitude as in the Old World. Thus the initial evolution of chromosomal polymorphisms on a continental scale was remarkably rapid and consistent. Here we report newer samples of inversion frequencies for the colonizing populations: the time series now spans almost one decade for North America and almost two decades for South America. Almost all inversions in the New World continue to show the same sign of frequency with latitude as in the Old World. Nevertheless, inversion clines have not consistently increased in steepness over time; nor have they consistently continued to converge on the Old World baseline. However, five arrangements in South America show directional, continentwide shifts in frequency. Overall, the initial consistency of clinal evolutionary trajectories seen in the first surveys seems not to have been maintained.
Biologists have long debated the speed, uniformity, and predictability of evolutionary change. However, evaluating such patterns on a geographic scale requires time-series data on replicate sets of natural populations. Drosophila subobscura has proven an ideal model system for such studies. This fly is broadly distributed in the Old World, but was introduced into both North and South America just over two decades ago and then spread rapidly. Rapid, uniform, and predictable evolution would be demonstrated if the invading flies evolved latitudinal clines that progressively converged on those of the native populations. Evolutionary geneticists quickly capitalized on this opportunity to monitor evolutionary dynamics. Just a few years after the introduction, they surveyed chromosomal inversion frequencies in both North and South America. On both continents they detected incipient latitudinal clines in chromosome inversion frequencies that almost always had the same sign with latitude as in the Old World. Thus the initial evolution of chromosomal polymorphisms on a continental scale was remarkably rapid and consistent. Here we report newer samples of inversion frequencies for the colonizing populations: the time series now spans almost one decade for North America and almost two decades for South America. Almost all inversions in the New World continue to show the same sign of frequency with latitude as in the Old World. Nevertheless, inversion clines have not consistently increased in steepness over time; nor have they consistently continued to converge on the Old World baseline. However, five arrangements in South America show directional, continentwide shifts in frequency. Overall, the initial consistency of clinal evolutionary trajectories seen in the first surveys seems not to have been maintained.
The chromosomal polymorphism of 13 European populations of Drosophila subobscura has been compared with that of the same populations collected 15-35 years ago. The chromosomal polymorphism of the old populations differs significantly from that of the new populations, mainly for chromosomes U and O. There is a very good agreement between the geographical space and the genetic space as shown by a graphical representation of the 26 statistical populations (13 old and 13 new) obtained by a principal coordinate analysis. This reflects both the existence of significant latitudinal clines for the frequencies of some chromosomal arrangements in the old and new samples and systematic changes that have taken place in these populations during the period that elapsed between the two surveys. An increase in the frequency of those arrangements typical of southern latitudes and a decrease for those common in northern latitudes is observed in all populations -Mediterranean, Atlantic and Central European. Furthermore, the genetic distances of the new populations to a southern population of reference have decreased in comparison with those of the old populations. These changes could be the result of climatic factors that are correlated with latitude. In particular, the assumption that global warming is responsible for all the changes observed appears rather likely. Whether these systematic changes of the chromosomal polymorphism are a consequence of local adaptations or have been produced by migration from the south remains an open question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.