Composites based on phenolic matrices and unmodified and chemically modified sugar cane bagasse and curaua fibers were prepared. The fibers were oxidized by chlorine dioxide, mainly phenolic syringyl and guaiacyl units of the lignin polymer, followed by grafting furfuryl alcohol (FA), which is a chemical obtained from a renewable source. The fibers were widely characterized by chemical composition analysis, crystallinity, UV-vis diffuse reflectance spectroscopy, SEM, DSC, TG, tensile strength, and 13C CP-MAS NMR. The composites were analyzed by SEM, impact strength, and DMA. The SEM images and DMA results showed that the oxidation of sugar cane bagasse fibers followed by reaction with FA favored the fiber/matrix interaction at the interface. The same chemical modification was less effective for curaua fibers, probably due to its lower lignin content, since the reaction considered touches mainly the lignin moiety. The tensile strength results obtained showed that the fibers were partially degraded by the chemical treatment, decreasing then the impact strength of the composites reinforced with them. In the continuity of the present project, efforts has been addressed to the optimization of fiber surface modification, looking for reagents preferably obtained from renewable resources and for chemical modifications that intensify the fiber/matrix interaction without loss of mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.