Cell-penetrating peptides (CPPs) comprise a group of arginine-rich oligopeptides that are able to deliver exogenous cargo into cells. A first step in the internalization of CPPs is their binding to the cell surface, a reaction likely to involve membrane phospholipids and/or heparan sulfate proteoglycans (HSPGs). The present work characterizes the interaction of R(9), one of the most efficient CPPs, with either heparan sulfate (HS) or lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Isothermal titration calorimetry shows that R(9) binds to HS with high affinity. Assuming that HS has n independent and equivalent binding sites for R(9), we find an association constant of 3.1 x 10(6) M(-1) at 28 degrees C. At this temperature, the reaction enthalpy is DeltaH(degrees)pep = - 5.5 kcal/mol and approximately 7 R(9) molecules bind per HS chain, which is equivalent to approximately 0.95 cationic/anionic charge ratio. Delta decreases in magnitude upon an increase in temperature, and the reaction becomes entropy-driven at higher temperatures (>or=37 degrees C). The positive heat-capacity change entailed by this reaction (DeltaC(degrees)P = +167 cal mol(-1) K(-1)) indicates the loss of polar residues on R(9)-HS binding, suggesting that hydrophobic forces play no major role on binding. Calorimetric analysis of the interaction of R(9) with POPC/POPG (75:25) vesicles reveals an association constant of 8.2 x 10(4) M(-1) at 28 degrees C. Using a surface partition equilibrium model to correct for electrostatic effects, we find an intrinsic partition constant of approximately 900 M(-1), a value that is also confirmed by electrophoretic mobility measurements. This corresponds to an electrostatic contribution of approximately 33% to the total free energy of binding. Deuterium nuclear magnetic resonance (NMR) shows no change in the headgroup conformation of POPC and POPG, suggesting that binding takes place at some distance from the plane of the polar groups. (31)P NMR indicates that the lipid bilayer remains intact upon R(9) binding. The fact that R(9) binds with greater affinity to HS than to anionic lipid vesicles makes the former molecule a more likely target in binding this CPP to the cell surface.
GDM was disclosed as a risk factor for non-elective cesarean section. Knowledge of the condition may have influenced obstetrical practice, favoring cesarean delivery.
Several studies have demonstrated that lipoplexes are two-phase systems over most mixing lipid/DNA charge ratios. Because these studies have focused on small unilamellar vesicles (SUV), they leave open the question as to whether a similar pattern is followed by other liposome types. The main purpose of this work is to examine the question further by characterizing the assembly of cationic lipoplexes prepared from 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl)imidazolinium chloride (DOTIM)/dioleoylphosphatidylethanolamine (DOPE) (1:1) liposomes of various types. Sedimentation in sucrose density gradients reveals that large unilamellar vesicles (LUV) and sedimented multilamellar vesicles (sMLV), as opposed to SUV, form lipoplexes that exist as a single phase over a relatively broad range of mixing (+/-) ratios. This is indicated by observing that most of the LUV and sMLV become involved in the assembly reaction up to mixing (+/-) ratios of 4 and 9, respectively, while only a small and constant fraction of SUV associates with DNA at all mixing (+/-) ratios tested. Consequently, while maximal (+/-) ratios of approximately 4.5 and 9 are found in LUV and sMLV lipoplexes, respectively, a final (+/-) ratio of only approximately 2 is determined in SUV lipoplexes. Isothermal titration calorimetry shows that this is the lowest possible charge ratio achieved when liposomes are titrated with DNA. Based on these observations and on the size differences of the liposomes used, a model of lipoplex formation is proposed.
Unicornuate uterus occurs due to a complete or partial nondevelopment of one Mullerian duct; sometimes it is associated with a rudimentary horn, which can communicate or not with uterine cavity or contain functional endometrium. Pregnancy in a rudimentary horn is rare and the outcome almost always unfavorable, usually ending in rupture during the first or second trimester with significant morbidity and mortality. Despite the availability and advances on imagiologic procedures, recognition of this ectopic pregnancy is frequently made at laparotomy after abdominal pain and collapse. The authors describe a case of a primigravida with 34 weeks of gestation admitted with a preeclampsia with severity criteria. A cesarean for fetal malpresentation was done and, unexpectedly, a rudimentary horn pregnancy was found with a live newborn. In the literature, few reports of a horn pregnancy reaching the viability with a live newborn are described, enhancing the clinical importance of this case. A review of literature concerning the epidemics, clinical presentation, and appropriate management of uterine horn pregnancies is made.
Melittin is an amphipathic cationic peptide derived from honeybee venom with well-known cytolytic and antimicrobial properties. When coupled to cationic polymers or lipid molecules, it forms conjugates with high transfection efficiency and low toxicity with promising applications in gene therapy. A first step in the internalization of melittin and its conjugates is their binding to the cell surface, a reaction likely to involve heparan sulfate proteoglycans (HSPG). In the present work, we characterize the binding equilibrium of heparan sulfate (HS) with two melittin analogues, [Cys(1)]melittin (mel-SH) and retro-inverso [Cys(1)]melittin (ri-mel-SH). The terminal cysteine found in these peptides replaces the N-terminal glycine present in native melittin and allows covalent binding to other molecules. Isothermal titration calorimetry (ITC) reveals a high affinity of each melittin analogue to HS. Association constants of 4.7 x 10(4) and 3.5 x 10(5) M(-)(1) are found at physiological ionic strength and 15 degrees C for ri-mel-SH and mel-SH, respectively. The reaction enthalpy measured under these conditions is DeltaH(degrees)pep= 4.2 kcal/mol for ri-mel-SH and DeltaH(degrees)pep= 1.1 kcal/mol for mel-SH. The peptide-to-HS stoichiometry is approximately 20 for ri-mel-SH and approximately 14 for mel-SH under the same conditions. Temperature dependence studies using ri-mel-SH (mel-SH) show that DeltaH(degrees)pep decreases in magnitude upon increase in temperature, which results in a molar heat capacity of DeltaH(degrees)pep= -322 cal mol(-)(1) K(-)(1) (-45 cal mol(-)(1) K(-)(1)). Such a negative heat capacity change is not expected for a purely electrostatic interaction and indicates that hydrophobic and other interactions are also involved in the binding equilibrium. Salt dependence studies of the binding constants confirm that nonelectrostatic forces are an important component of the HS-melittin interaction. Binding to HS induces conformational changes in both peptides, with ri-mel-SH showing a 6-fold increase of the alpha-helix content when incubated with HS under saturation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.