Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through ␣51 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases. INTRODUCTIONCell migration plays a central role in both normal and pathological processes, including embryonic development, wound healing, inflammation, and tumor metastasis (Trinkaus, 1984). Integrin-mediated adhesion to the extracellular matrix is a critical regulator of cell migration speed for many cell types, including fibroblasts and carcinomas. These cell types exhibit a biphasic relationship between cell migration speed and substratum concentration (Goodman et al., 1989;DiMilla et al., 1993;Huttenlocher et al., 1996;Ho et al., 1997;Palecek et al., 1997), with maximum migration rates at intermediate adhesiveness where cells can both efficiently form adhesions at the cell front and release adhesive contacts at the cell rear (DiMilla et al., 1991;Duband et al., 1991;Huttenlocher et al., 1995). Previous studies have implicated reduced adhesive release at the cell's rear as an important mechanism for inhibited migration under conditions of high cell substratum adhesiveness (Marks et al., 1991;Hendey et al., 1992;Jay et al., 1995;Huttenlocher et al., 1997;Cox and Huttenlocher, 1998;Palecek et al., 1998).Integrins are a family of heterodimeric cell surface adhesion receptors that bind to specific extracellular matrix components and cluster in the membrane to form organized adhesive contacts called focal complexes or focal adhesions (Hynes, 1992). To migrate, cells must coordinately assemble and disassemble integrin-containing adhesive complexes. Integrin-containing adhesive complexes regulate cell migration by performing both an adhesive function, linking the extracellular matrix to the actin cytoskeleton, and a signal transduction function by regulating molecules important for cell motility (Clark and Brugge, 1995;Huttenlocher et al., 1995; Ilic et al., 1995;Cary et al., 1996Cary ...
The cadherin–catenin complex is essential for tissue morphogenesis during animal development. In cultured mammalian cells, p120 catenin (p120ctn) is an important regulator of cadherin–catenin complex function. However, information on the role of p120ctn family members in cadherin-dependent events in vivo is limited. We have examined the role of the single Caenorhabditis elegans p120ctn homologue JAC-1 (juxtamembrane domain [JMD]–associated catenin) during epidermal morphogenesis. Similar to other p120ctn family members, JAC-1 binds the JMD of the classical cadherin HMR-1, and GFP-tagged JAC-1 localizes to adherens junctions in an HMR-1–dependent manner. Surprisingly, depleting JAC-1 expression using RNA interference (RNAi) does not result in any obvious defects in embryonic or postembryonic development. However, jac-1(RNAi) does increase the severity and penetrance of morphogenetic defects caused by a hypomorphic mutation in the hmp-1/α-catenin gene. In these hmp-1 mutants, jac-1 depletion causes failure of the embryo to elongate into a worm-like shape, a process that involves contraction of the epidermis. Associated with failed elongation is the detachment of actin bundles from epidermal adherens junctions and failure to maintain cadherin in adherens junctions. These results suggest that JAC-1 acts as a positive modulator of cadherin function in C. elegans.
Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the  integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.
Caenorhabditis elegans is a powerful model system for investigating the establishment, regulation and function of adhesive structures in vivo. C. elegans has several adhesion complexes related to those in vertebrates. These include: (1) epithelial apical junctions, which have features of both adherens and tight junctions; (2) dense bodies, which are muscle-attachment structures similar to focal adhesions; (3) fibrous organelles, which resemble hemidesmosomes and mediate mechanical coupling between tissues; and (4) a putative dystrophin-glycoprotein complex that has potential roles in muscle function and embryogenesis. Recent work has increased our understanding of these structures and has given new insights into the functions of their vertebrate counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.