Biogas is in many respects a serious alternative to other fossil resources and complements other renewable energy sources from wind and sun. Biogas can be produced in many places decentrally. Its energy potential is high, and it is widely used in the EU and all over the world. With more than 16,000 ktoe of oil equivalent in the EU in 2016, it corresponds to approximately 8% of the total primary energy produced by renewable energies in the EU, produced with nearly 17,000 biogas plants. Nevertheless, the production costs of biogas and its products like energy, heat, and fuel are still too high. Kost et al. (2018) show a comparison of electricity generation costs of different renewable energies and their future potentials. While electricity from huge biogas plants offers generation costs from 10 to 15 ct/kWh, electricity from onshore wind and huge solar systems offers generation costs from 4 to 8 ct/kWh. Although substantial progress has been made with regard to substrate use, production techniques and market designs, many more innovations are needed throughout the biogas value chain for it to be competitive in energy markets without high subsidies. As several papers in the special issue on biogas show, there are numerous innovations and product designs with regard to energy and material uses that could maintain or even increase the importance of biogas production both within and outside of the EU. There are many potential benefits of biogas, as it offers high shares of produced renewable energies as well as large amounts of material products like digestates and in future maybe products of higher value such as proteins or lactic acids.
The strategy of using biogenic resources in a bioeconomy could be seen as one answer to the geopolitical challenges the world is facing in the twenty-first century. One of those challenges is the closing of the prosperity gap between rich and poor countries. However, considering the current global population growth and anthropogenically induced climate change, it is expected that efforts to achieve this goal will be accompanied by an increasing demand for food, feed, products, and energy, which cannot be satisfied by the expected supply of non-biogenic raw materials and resources.Transforming an economy is extremely complex: domestic and international obligations, traditional practices, and divergent interests and wishes need to be taken into consideration. This requires the development of an appropriate strategy and adequate instruments and tools to support it.This chapter discusses a range of possible knowledge-based instruments and tools that take a systemic view of the challenges in such transformation processes.
Keywords
Scenarios • Scenario building • Economic models • Ecological and biophysical models • Life cycle assessment • Integrated assessment models
Learning ObjectivesAfter studying this chapter, you should:• Understand how transformation theory can support transition processes.• Have an overview of main instruments and tools to quantify and assess transition developments.• Be acquainted with the main challenges, strategies and drivers to facilitate the transition to a bioeconomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.