The principal limitations of the terms NAFLD and NASH are the reliance on exclusionary confounder terms and the use of potentially stigmatising language. This study set out to determine if content experts and patient advocates were in favor of a change in nomenclature and/or definition. A modified Delphi process was led by three large pan-national liver associations. The consensus was defined a priori as a supermajority (67%) vote. An independent committee of experts external to the nomenclature process made the final recommendation on the acronym and its diagnostic criteria. A total of 236 panelists from 56 countries participated in 4 online surveys and 2 hybrid meetings. Response rates across the 4 survey rounds were 87%, 83%, 83%, and 78%, respectively. Seventy-four percent of respondents felt that the current nomenclature was sufficiently flawed to consider a name change. The terms “nonalcoholic” and “fatty” were felt to be stigmatising by 61% and 66% of respondents, respectively. Steatotic liver disease was chosen as an overarching term to encompass the various aetiologies of steatosis. The term steatohepatitis was felt to be an important pathophysiological concept that should be retained. The name chosen to replace NAFLD was metabolic dysfunction–associated steatotic liver disease. There was consensus to change the definition to include the presence of at least 1 of 5 cardiometabolic risk factors. Those with no metabolic parameters and no known cause were deemed to have cryptogenic steatotic liver disease. A new category, outside pure metabolic dysfunction–associated steatotic liver disease, termed metabolic and alcohol related/associated liver disease (MetALD), was selected to describe those with metabolic dysfunction–associated steatotic liver disease, who consume greater amounts of alcohol per week (140–350 g/wk and 210–420 g/wk for females and males, respectively). The new nomenclature and diagnostic criteria are widely supported and nonstigmatising, and can improve awareness and patient identification.
Roughly eight million people live on Long Island, including Brooklyn and Queens, and despite improvements in wastewater treatment, nearly all its coastal waterbodies are impaired by excessive nitrogen. We used nutrient stoichiometry and stable isotope ratios in estuarine biota and soils to identify water pollution hot spots and compare among potential indicators. We found strong gradients in δN values, which were correlated with watershed land cover, population density, and wastewater discharges. Weaker correlations were found for δC values and nutrient stoichiometric ratios. Structural equation modeling identified contrasts between western Long Island, where δN values depended on watershed population density, and eastern Long Island where δN values reflected agriculture and sewage discharges. These results illustrate the use of stable isotopes as water quality indicators, and establish a baseline against which the efficacy of strategies to reduce nutrients can be measured.
Coastal wetlands comprise important global carbon sinks; however, anthropogenic disturbance accompanied with accelerating sea level rise threaten their continued survival. In this study, we quantified habitat disturbance to salt marshes in Barnegat Bay, New Jersey, resulting from the construction of ponds for mosquito control. Geographic object‐based image analysis of high‐resolution four‐band aerial imagery revealed that over 7,000 ponds were constructed in the marsh complex with pond densities as high as 290 ponds per km2. Physical disturbance from pond creation and sediment dispersal extended to over 17% of the bay's tidal wetlands. By tracking recolonization of vegetation, we estimated that it took 5 years for 51% vegetation recovery and 10 years for 69% recovery, with complete recover (100%) not expected for more than 50 years. This suggests that efforts to extend the lifespan of drowning coastal wetlands through sediment additions might disrupt carbon dioxide assimilation, as effects of disturbance persist. Focusing on greenhouse gas exchange, our work found that areas of marsh vegetation contribute to carbon assimilation (−42 g C · m−2 · year−1), while ponds and areas of bare peat created by pond excavation were associated with carbon emissions (44 and 125 g C · m−2 · year−1, respectively). These results suggest that the conversion of wetlands to ponds—which is a significant driver of coastal wetland loss worldwide—may convert coastal wetlands from greenhouse gas sinks to sources. Additionally, quantifying the area of vegetation within a marsh (vs. bare ground or open water) is important for quantifying their greenhouse gas mitigation function.
In aquatic ecosystems, biological indicators are used in concert with nutrient concentration data to identify habitat impairments related to cultural eutrophication. This approach has been less commonly implemented in coastal areas due to the dominance of physical conditions in structuring biological assemblage data. Here, we describe the use of the stable isotopic composition of (Say), the eastern mudsnail, as an indicator of cultural eutrophication for 40 locations in coastal estuaries in New York. We found N enrichment in mudsnail tissue where watersheds had high population densities, land use patterns were more urbanized, and when sampling sites were adjacent to wastewater treatment plant discharges. Stable carbon isotopes were responsive to salinity and watershed forest cover, with more saline sites reflecting a predominantly C or algal carbon isotopic signature and more forested sites a lighter isotopic signature reflecting greater inputs of C terrestrial detrital carbon. Mudsnail nitrogen isotopic composition had a high level of separation between more affected and pristine watersheds (from 6.6 to 14.1‰), highlighting its utility as an indicator. We thus propose that stable isotope values of estuarine biota, such as the eastern mudsnail, can be used in concert with water quality data to identify areas where improvements in water quality are needed and can also be used to identify sources of detrital carbon to estuarine environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.