In previous studies the allosteric inhibition of cytochrome c oxidase at high intramitochondrial ATP/ADPratios via binding of the nucleotides to the matrix domain of subunit IV was demonstrated. Here we show that the allosteric ATP-inhibition of the isolated bovine heart enzyme is switched on by cAMP-dependent phosphorylation with protein kinase A of subunits II (and/or III) and Vb, and switched off by subsequent incubation with protein phosphatase 1. It is suggested that after cAMP-dependent phosphorylation of cytochrome c oxidase mitochondrial respiration is controlled by the ATP/ADP-ratio keeping the proton motive force v vp low, and the efficiency of energy transduction high. After Ca 2+ -induced dephosphorylation this control is lost, accompanied by increase of v vp, slip of proton pumping (decreased H + /e^stoichiometry), and increase of the rate of respiration and ATP-synthesis at a decreased efficiency of energy transduction.z 2000 Federation of European Biochemical Societies.
Life of higher organisms is essentially dependent on the efficient synthesis of ATP by oxidative phosphorylation in mitochondria. An important and as yet unsolved question of energy metabolism is how are the variable rates of ATP synthesis at maximal work load during exercise or mental work and at rest or during sleep regulated. This article reviews our present knowledge on the structure of bacterial and eukaryotic cytochrome c oxidases and correlates it with recent results on the regulatory functions of nuclear-coded subunits of the eukaryotic enzyme, which are absent from the bacterial enzyme. A new molecular hypothesis on the physiological regulation of oxidative phosphorylation is proposed, assuming a hormonally controlled dynamic equilibrium in vivo between two states of energy metabolism, a relaxed state with low ROS (reactive oxygen species) formation, and an excited state with elevated formation of ROS, which are known to accelerate aging and to cause degenerative diseases and cancer. The hypothesis is based on the allosteric ATP inhibition of cytochrome c oxidase at high intramitochondrial ATP/ADP ratios ("second mechanism of respiratory control"), which is switched on by cAMP-dependent phosphorylation and switched off by calcium-induced dephosphorylation of the enzyme.
A new control of mitochondrial membrane potential delta(psi)m and formation of reactive oxygen species (ROS) is presented, based on allosteric ATP-inhibition of cytochrome c oxidase at high intramitochondrial ATP/ADP ratios. Since the rate of ATP synthesis by the ATP synthase is already maximal at low membrane potentials (100-120 mV), the ATP/ADP ratio will also be maximal at this delta(psi)m (at constant rate of ATP consumption). Therefore the control of respiration by the ATP/ADP-ratio keeps delta(psi)m low. In contrast, the known 'respiratory control' leads to an inhibition of respiration only at high delta(psi)m values (150-200 mV) which cause ROS formation. ATP-inhibition of cytochrome c oxidase is switched on and off by reversible phosphorylation (via cAMP and calcium, respectively). We propose that 'stress hormones' which increase intracellular [Ca2+] also increase delta(psi)m and ROS formation, which promote degenerative diseases and accelerate aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.