In the event of a natural disaster, geo-tagged Tweets are an immediate source of information for locating casualties and damages, and for supporting disaster management. Topic modeling can help in detecting disaster-related Tweets in the noisy Twitter stream in an unsupervised manner. However, the results of topic models are difficult to interpret and require manual identification of one or more “disaster topics”. Immediate disaster response would benefit from a fully automated process for interpreting the modeled topics and extracting disaster relevant information. Initializing the topic model with a set of seed words already allows to directly identify the corresponding disaster topic. In order to enable an automated end-to-end process, we automatically generate seed words using older Tweets from the same geographic area. The results of two past events (Napa Valley earthquake 2014 and hurricane Harvey 2017) show that the geospatial distribution of Tweets identified as disaster related conforms with the officially released disaster footprints. The suggested approach is applicable when there is a single topic of interest and comparative data available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.