The metallothionein system in Drosophila melanogaster is composed of two genes, Mto and Mtn, that code for distinctly different proteins. In order to compare the properties of Mto and Mm, we transformed yeast with several fusion plasmids. The Mto and Mtn cDNAs, when placed under the control of CUP1 or PGK promoters, can confer a copper-resistance phenotype to copper-hypersensitive cells. Both Mto and Mtn proteins can be characterized in extracts from transformed yeast cells.
Drosophila ELAV is the founding member of an evolutionarily conserved family of RNA-binding proteins considered as key inducers of neuronal differentiation. Although several ELAV-specific targets have been identified, little is known about the role of elav during neural development. Here, we report a detailed characterization of the elav mutant commissural phenotype. The reduced number of commissures in elav mutant embryos is not due to loss or misspecification of neural cells but results from defects in commissural axon projections across the midline. We establish a causal relationship between the elav mutant commissural phenotype and a reduction in the expression of commissureless, a key component of the Robo/Slit growth cone repulsive signalling pathway. In the nerve cord of elav mutant embryos, comm mRNA expression is strongly reduced in neurons, but not in midline glial cells. Furthermore, specific expression of an elav transgene in posterior neurons of each segment of an elav mutant nerve cord restores comm mRNA expression in these cells, as well as the formation of posterior commissures. Finally, forced expression of comm in specific commissural neuron subsets rescues the midline crossing defects of these neurons in elav mutant embryos, further indicating that elav acts cell autonomously on comm expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.