The soluble TNF-like weak inducer of apoptosis (TWEAK, TNFSF12) binds to the fibroblast growth factor-inducible 14 receptor (FN14, TNFRSF12A) on the cell membrane and induces multiple biological responses, such as proliferation, migration, differentiation, angiogenesis and apoptosis. Previous reports show that TWEAK, which does not contain a death domain in its cytoplasmic tail, induces the apoptosis of tumor cell lines through the induction of TNFα secretion. TWEAK induces apoptosis in human keratinocytes. Our experiments clearly demonstrate that TWEAK does not induce the secretion of TNFα or TRAIL proteins. The use of specific inhibitors and the absence of procaspase-3 cleavage suggest that the apoptosis of keratinocytes follows a caspase- and cathepsin B-independent pathway. Further investigation showed that TWEAK induces a decrease in the mitochondrial membrane potential of keratinocytes. Confocal microscopy showed that TWEAK induces the cleavage and the translocation of apoptosis inducing factor (AIF) from the mitochondria to the nucleus, thus initiating caspase-independent apoptosis. Moreover, TWEAK induces FOXO3 and GADD45 expression, cdc2 phosphorylation and cdc2 and cyclinB1 degradation, resulting in the arrest of cell growth at the G2/M phase. Finally, we report that TWEAK and FN14 are normally expressed in the basal layer of the physiological epidermis and are greatly enhanced in benign (psoriasis) and malignant (squamous cell carcinoma) skin pathologies that are characterized by an inflammatory component. TWEAK might play an essential role in skin homeostasis and pathology.
Toxic epidermal necrolysis (TEN) is characterized by an acute detachment and destruction of keratinocytes, affecting large areas of the skin. It is often related to adverse drug reactions. Previous studies have shown that effector CD8+ T cells, which accumulate in the blister fluid, are functionally cytotoxic and act through a classical perforin/granzyme B pathway. It has recently been shown that these cytotoxic T cells also secrete granulysin peptide, which is lethal to keratinocytes. These cytotoxic T cells exert their killer activity against autologous keratinocytes in the presence of the drug. However, they are unlikely to be the only effectors of TEN. We therefore searched for soluble death factors in the blister fluids that might kill keratinocytes. We found that the amounts of interferon-γ, TRAIL and TNF-α proteins were significantly greater in TEN blister fluids than in all controls (normal sera, TEN sera, burns and Eosinophilic pustular folliculitis blister fluids) and TNF-like weak inducer of apoptosis (TWEAK) amounts are also greater in all controls except burns. We showed that these proteins acted in synergy to induce the death of keratinocytes in vitro. We also found that TRAIL and TWEAK were secreted by CD1a+ and CD14+ cells present in the blister fluids. Thus, in addition to MHC class I-restricted cytotoxic T lymphocytes (CTLs), which lyse keratinocytes, ligands secreted by non-lymphoid cells capable of inducing keratinocyte death in an MHC class I-independent manner, also seem to be present in the blister fluids of patients with TEN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.