Growing evidence suggests that a proportion of interstitial myofibroblasts detected during renal tubulointerstitial fibrosis originates from tubular epithelial cells by a process called epithelial-mesenchymal transition (EMT). The IL-6-type cytokine oncostatin M (OSM) has been recently implicated in the induction of EMT. We investigated OSM effects on the expression of both cell-cell contact proteins and mesenchymal markers and studied OSM-induced intracellular signaling mechanisms associated with these events in human proximal tubular cells. Human recombinant OSM attenuated the expression of N-cadherin, E-cadherin, and claudin-2 in human kidney-2 (HK-2) cells associated with the induction of HK-2 cell scattering in 3D collagen matrices. Conversely, expression of collagen type I, vimentin, and S100A4 was induced by OSM. OSM-stimulated cell scattering was inhibited by antibodies against gp130. Besides inducing phosphorylation of Stat1 and Stat3, OSM led to a strong concentration-and time-dependent phosphorylation of the mitogen-activated protein kinases ERK1, ERK2, and ERK5. MEK1/2 inhibitor U0126 (10 M) blocked basal and OSM-induced ERK1/2 phosphorylation but not phosphorylation of either ERK5 or Stat1/3. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at concentrations which inhibit ERK1/2 phosphorylation but not ERK5 phosphorylation, restored N-cadherin expression in the presence of OSM, inhibited basal claudin-2 expression, but did not affect either basal or OSM-inhibited E-cadherin expression or OSM-induced expression of collagen type I and vimentin. These results suggest that in human proximal tubular cells ERK1/2 signaling represents an important component of OSM's inhibitory effect on N-cadherin expression. Furthermore, functional ERK1/2 signaling is necessary for basal claudin-2 expression.
Overexpression of a constitutively active mitogen-activated protein kinase kinase (MAPKK or MEK) induces neuronal differentiation in adrenal pheochromocytoma 12 cells but transformation in fibroblasts. In the present study, we used a constitutively active MAPK/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) mutant to investigate the function of the highly conserved MEK1-ERK2 signaling module in renal epithelial cell differentiation and proliferation. Stable expression of constitutively active MEK1 (CA-MEK1) in epithelial MDCK-C7 cells led to an increased basal and serumstimulated ERK1 and ERK2 phosphorylation as well as ERK2 activation when compared with mock-transfected cells. In both mock-transfected and CA-MEK1-transfected MDCK-C7 cells, basal and serum-stimulated ERK1 and ERK2 phosphorylation was almost abolished by the synthetic MEK inhibitor PD098059. Increased ERK2 activation due to stable expression of CA-MEK1 in MDCK-C7 cells was associated with epithelial dedifferentiation as shown by both a dramatic alteration in cell morphology and an abolished cytokeratin expression but increased vimentin expression. In addition, we obtained a delayed and reduced serum-stimulated cell proliferation in CA-MEK1-transfected cells (4.6-fold increase in cell number/cm 2 after 5 days of serum stimulation) as compared with mock-transfected controls (12.9-fold increase in cell number/cm 2 after 5 days). This result was confirmed by flow cytometric DNA analysis showing that stable expression of CA-MEK1 decreased the proportion of MDCK-C7 cells moving from G 0 /G 1 to G 2 /M as compared with both untransfected and mock-transfected cells. Taken together, our data demonstrate an association of increased basal and serumstimulated activity of the MEK1-ERK2 signaling module with epithelial dedifferentiation and growth inhibition in MDCK-C7 cells. Thus, the MEK1-ERK2 signaling pathway could act as a negative regulator of epithelial differentiation thereby leading to an attenuation of MDCK-C7 cell proliferation.Extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) 1 represent one subfamily of serine/threonine protein kinases collectively referred to as the mitogen-activated protein kinase (MAPK) family. They have the unique feature of being activated by phosphorylation on threonine and tyrosine residues by an upstream dual-specificity kinase called MAPK kinase (MAPKK or MKK) or MAPK/ERK kinase (MEK) (reviewed in Refs. 1 and 2). The MEKs upstream of ERKs constitute an evolutionary conserved family of protein kinases that includes at least three highly homologous mammalian isoforms, namely MEK1a, MEK1b, and MEK2 (2). They are highly specific for both of their downstream targets ERK1 and ERK2 (2) and are typically activated by serine/threonine phosphorylation catalyzed by three different classes of upstream kinases: the Raf family of serine/threonine kinases, Raf-1, A-Raf, and B-Raf (3-7), the protooncogene product Mos (8, 9), and the MEK kinase 1 (MEKK1) (10). Despite their high degree of similarity, MEK1a and MEK2...
LLC-PK(1)-FBPase(+) cells, which are a gluconeogenic substrain of porcine renal LLC-PK(1) cells, exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase (PDG) activity. On adaptation to acidic medium (pH 6.9, 9 mM HCO(-)(3)), LLC-PK(1)-FBPase(+) cells also exhibit a greater increase in ammonia production and respond with an increase in assayable PDG activity. The changes in PDG mRNA levels were examined by using confluent cells grown on plastic dishes or on permeable membrane inserts. The latter condition increased the state of differentiation of the LLC-PK(1)-FBPase(+) cells. The levels of the primary porcine PDG mRNAs were analyzed by using probes that are specific for the 5.0-kb PDG mRNA (p2400) or that react equally with both the 4.5- and 5.0-kb PDG mRNAs (p930 and r1500). In confluent dish- and filter-grown LLC-PK(1)-FBPase(+) cells, the predominant 4.5-kb PDG mRNA is increased threefold after 18 h in acidic media. However, in filter-grown epithelia, which sustain an imposed pH and HCO(-)(3) gradient, this adaptive increase is observed only when acidic medium is applied to both the apical and the basolateral sides of the epithelia. Half-life experiments established that induction of the 4. 5-kb PDG mRNA was due to its stabilization. An identical pattern of adaptive increases was observed for the cytosolic PEPCK mRNA. In contrast, no adaptive changes were observed in the levels of the 5. 0-kb PDG mRNA in either cell culture system. Furthermore, cultures were incubated in low-potassium (0.7 mM) media for 24-72 h to decrease intracellular pH while maintaining normal extracellular pH. LLC-PK(1)-FBPase(+) cells again responded with increased rates of ammonia production and increased levels of the 4.5-kb PDG and PEPCK mRNAs, suggesting that an intracellular acidosis is the initiator of this adaptive response. Because all of the observed responses closely mimic those characterized in vivo, the LLC-PK(1)-FBPase(+) cells represent a valuable tissue culture model to study the molecular mechanisms that regulate renal gene expression in response to changes in acid-base balance.
LLC-PK(1)-FBPase(+) cells are a gluconeogenic and pH-responsive renal proximal tubule-like cell line. On incubation with acidic medium (pH 6.9), LLC-PK(1)-FBPase(+) cells exhibit an increased rate of ammonia production as well as increases in glutaminase and phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels and enzyme activities. The increase in PEPCK mRNA is due to an enhanced rate of transcription that is initiated in response to intracellular acidosis. The involvement of known MAPK activities (ERK1/2, SAPK/JNK, p38) in the associated signal transduction pathway was examined by determining the effects of specific MAPK activators and inhibitors on basal and acid-induced PEPCK mRNA levels. Transfer of LLC-PK(1)-FBPase(+) cultures to acidic medium resulted in specific phosphorylation, and thus activation, of p38 and of activating transcription factor-2 (ATF-2), respectively. Anisomycin (AI), a strong p38 activator, increased PEPCK mRNA to levels comparable to those observed with acid stimulation. AI also induced a time-dependent phosphorylation of p38 and ATF-2. SB-203580, a specific p38 inhibitor, blocked both acid- and AI-induced PEPCK mRNA levels. Western blot analyses revealed that the SB-203580-sensitive p38alpha isoform is strongly expressed. The octanucleotide sequence of the cAMP-response element-1 site of the PEPCK promotor is a perfect match to the consensus element for binding ATF-2. The specificity of ATF-2 binding was proven by ELISA. We conclude that the SB-203580-sensitive p38alpha-ATF-2 signaling pathway is a likely mediator of the pH-responsive induction of PEPCK mRNA levels in renal LLC-PK(1)-FBPase(+) cells.
Podocytes play a critical role in glomerular barrier function, both in health and disease. However, in vivo terminally differentiated podocytes are difficult to be maintained in in vitro culture. Induced pluripotent stem cells (iPSCs) offer the unique possibility for directed differentiation into mature podocytes. The current differentiation protocol to generate iPSC-derived podocyte-like cells provides a robust and reproducible method to obtain podocyte-like cells after 10 days that can be employed in in vitro research and biomedical engineering. Previous published protocols were improved by testing varying differentiation media, growth factors, seeding densities, and time course conditions. Modifications were made to optimize and simplify the one-step differentiation procedure. In contrast to earlier protocols, adherent cells for differentiation were used, the use of fetal bovine serum (FBS) was reduced to a minimum, and thus ß-mercaptoethanol could be omitted. The plating densities of iPSC stocks as well as the seeding densities for differentiation cultures turned out to be a crucial parameter for differentiation results. Conditionally immortalized human podocytes served as reference controls. iPSC-derived podocyte-like cells showed a typical podocyte-specific morphology and distinct expression of podocyte markers synaptopodin, podocin, nephrin and WT-1 after 10 days of differentiation as assessed by immunofluorescence staining or Western blot analysis. qPCR results showed a downregulation of pluripotency markers Oct4 and Sox-2 and a 9-fold upregulation of the podocyte marker synaptopodin during the time course of differentiation. Cultured podocytes exhibited endocytotic uptake of albumin. In toxicological assays, matured podocytes clearly responded to doxorubicin (Adriamycin™) with morphological alterations and a reduction in cell viability after 48 h of incubation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.