Populations that repeatedly adapt to the same environmental stressor offer a unique opportunity to study adaptation, especially if there are a priori predictions about the genetic basis underlying phenotypic evolution. Hydrogen sulphide (H 2 S) blocks the cytochrome-c oxidase complex (COX), predicting the evolution of decreased H 2 S susceptibility of the COX in three populations in the Poecilia mexicana complex that have colonized H 2 S-containing springs. Here, we demonstrate that decreased H 2 S susceptibility of COX evolved in parallel in two sulphide lineages, as evidenced by shared amino acid substitutions in cox1 and cox3 genes. One of the shared substitutions likely triggers conformational changes in COX1 blocking the access of H 2 S. In a third sulphide population, we detect no decreased H 2 S susceptibility of COX, suggesting that H 2 S resistance is achieved through another mechanism. Our study thus demonstrates that even closely related lineages follow both parallel and disparate molecular evolutionary paths to adaptation in response to the same selection pressure.
Nuttall’s waterweed ( Elodea nuttallii ) is the most abundant invasive aquatic plant species in several European countries. Elodea populations often follow a boom-bust cycle, but the causes and consequences of this dynamics are yet unknown. We hypothesize that both boom and bust periods can be affected by dreissenid mussel invasions. While mutual facilitations between these invaders could explain their rapid parallel expansion, subsequent competition for space might occur. To test this hypothesis, we use data on temporal changes in the water quality and the abundance of E. nuttallii and the quagga mussel Dreissena rostriformis bugensis in a temperate shallow lake. Lake Müggelsee (Germany) was turbid and devoid of submerged macrophytes for 20 years (1970–1989), but re-colonization with macrophytes started in 1990 upon reductions in nutrient loading. We mapped macrophyte abundance from 1999 and mussel abundance from 2011 onwards. E. nuttallii was first detected in 2011, spread rapidly, and was the most abundant macrophyte species by 2017. Native macrophyte species were not replaced, but spread more slowly, resulting in an overall increase in macrophyte coverage to 25% of the lake surface. The increased abundance of E. nuttallii was paralleled by increasing water clarity and decreasing total phosphorus concentrations in the water. These changes were attributed to a rapid invasion by quagga mussels in 2012. In 2017, they covered about one-third of the lake area, with mean abundances of 3,600 mussels m −2 , filtering up to twice the lake’s volume every day. The increasing light availability in deeper littoral areas supported the rapid spread of waterweed, while in turn waterweed provided surface for mussel colonization. Quantities of dreissenid mussels and E. nuttallii measured at 24 locations were significantly correlated in 2016, and yearly means of E. nuttallii quantities increased with increasing mean dreissenid mussel quantities between 2011 and 2018. In 2018, both E. nuttallii and dreissenid abundances declined. These data imply that invasive waterweed and quagga mussels initially facilitated their establishment, supporting the invasional meltdown hypothesis, while subsequently competition for space may have occurred. Such temporal changes in invasive species interaction might contribute to the boom-bust dynamics that have been observed in Elodea populations.
BackgroundLife history traits like developmental time, age and size at maturity are directly related to fitness in all organisms and play a major role in adaptive evolution and speciation processes. Comparative genomic or transcriptomic approaches to identify positively selected genes involved in species divergence can help to generate hypotheses on the driving forces behind speciation. Here we use a bottom-up approach to investigate this hypothesis by comparative analysis of orthologous transcripts of four closely related European Radix species.ResultsSnails of the genus Radix occupy species specific distribution ranges with distinct climatic niches, indicating a potential for natural selection driven speciation based on ecological niche differentiation. We then inferred phylogenetic relationships among the four Radix species based on whole mt-genomes plus 23 nuclear loci. Three different tests to infer selection and changes in amino acid properties yielded a total of 134 genes with signatures of positive selection. The majority of these genes belonged to the functional gene ontology categories “reproduction” and “genitalia” with an overrepresentation of the functions “development” and “growth rate”.ConclusionsWe show here that Radix species divergence may be primarily enforced by selection on life history traits such as (larval-) development and growth rate. We thus hypothesise that life history differences may confer advantages under the according climate regimes, e.g., species occupying warmer and dryer habitats might have a fitness advantage with fast developing susceptible life stages, which are more tolerant to habitat desiccation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0434-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.