We propose a new approach to competitive analysis in online scheduling by introducing the novel concept of competitiveratio approximation schemes. Such a scheme algorithmically constructs an online algorithm with a competitive ratio arbitrarily close to the best possible competitive ratio for any online algorithm. We study the problem of scheduling jobs online to minimize the weighted sum of completion times on parallel, related, and unrelated machines, and we derive both deterministic and randomized algorithms which are almost best possible among all online algorithms of the respective settings. We also generalize our techniques to arbitrary monomial cost functions and apply them to the makespan objective. Our method relies on an abstract characterization of online algorithms combined with various simplifications and transformations. We also contribute algorithmic means to compute the actual value of the best possible competitive ratio up to an arbitrary accuracy. This strongly contrasts (nearly) all previous manually obtained competitiveness results and, most importantly, it reduces the search for the optimal competitive ratio to a question that a computer can answer. We believe that our concept can also be applied to many other problems and yields a new perspective on online algorithms in general.
We study the problems of non-preemptively scheduling and packing malleable and parallel tasks with precedence constraints to minimize the makespan. In the scheduling variant, we allow the free choice of processors; in packing, each task must be assigned to a contiguous subset. Malleable tasks can be processed on different numbers of processors with varying processing times, while parallel tasks require a fixed number of processors.For precedence constraints of bounded width, we resolve the complexity status of the problem with any number of processors and any width bound. We present an FPTAS based on Dilworth's decomposition theorem for the NP-hard problem variants, and exact efficient algorithms for all remaining special cases. For our positive results, we do not require the otherwise common monotonous penalty assumption on the processing times of malleable tasks, whereas our hardness results hold even when assuming this restriction. We complement our results by showing that these problems are all strongly NP-hard under precedence constraints which form a tree.
We study the problems of non-preemptively scheduling and packing malleable and parallel tasks with precedence constraints to minimize the makespan. In the scheduling variant, we allow the free choice of processors; in packing, each task must be assigned to a contiguous subset. Malleable tasks can be processed on different numbers of processors with varying processing times, while parallel tasks require a fixed number.For precedence constraints of bounded width, we resolve the complexity status of every particular problem setting for any width bound and number of processors. We present an FPTAS based on Dilworth's decomposition theorem for the NP-hard problem variants, and exact efficient algorithms for all remaining special cases. For our positive results, we do not require the otherwise common monotonous penalty assumption on the processing times of malleable tasks, whereas our hardness results hold even when assuming this restriction. We complement our results by showing that these problems are all strongly NP-hard under precedence constraints which form a tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.