Moderate exercise appears to stimulate the immune system, but there is good evidence that intense exercise can cause immune deficiency. In the present study the authors examined the effect of continuous physical exercise (35% of VO2 max), calorie deficiency and sleep deprivation on the immune system of young men participating in a 5–7 days military training course. There was a two–three fold increase of neutrophils from day 1, the values remained high and decreased slightly at the end of the course. Monocyte counts also increased with a pattern similar to that of neutrophils. Eosinophils decreased to 30% of control and lymphocyte numbers decreased by 30–40%. All the major subgroups (CD4 T cells , CD8 T cells, B cells, NK cells) were reduced. Neutrophil function, as tested by measuring chemotaxis, was significantly stimulated during the first days of the course, in particular in the group with the lowest calorie intake. The mitogenic response of lymphocytes to PHA and Con A was variable, ranging from stimulation during one course to no effect in another course. Serum levels of immunoglobulins decreased significantly during the course. IgG was reduced by 6–7%, IgA by 10–20% and IgM by 20–35%. The authors found no changes of interleukin 1, 2 and 4 during the course, but a (12–20%) reduction (P<0.01) of interleukin 6 , and an increase (P<0.01) of granulocyte–macrophage colony stimulating factor. Altogether the results from the ranger course present a mixed‐up picture. The non‐specific phagocyte‐related immunity was enhanced. On the other hand, the data indicate that even a moderate physical activity, around the clock, caused significant suppression of a number of parameters reflecting the status of the specific, lymphocyte‐related immunity. It is noteworthy, however, that there was no significantly increased infection rate during the course or in the first 4–5 weeks thereafter.
A method based on the direct injection of diluted urine for the identification and quantification of morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine, codeine-6-glucuronide, ethylmorphine, ethylmorphine-6-glucuronide and 6-acetylmorphine (6AM) in human urine by electrospray ionisation liquid chromatography-tandem mass spectrometry was validated for use as a confirmation procedure in urine drug testing. Four deuterium labelled analogues were used as internal standards: morphine-3-glucuronide-D3, morphine-D3, codeine-D3 and 6AM-D3. Twenty microlitre aliquots of urine were mixed with 80 mul of the internal standard solution in autosampler vials and 10 mul was injected. The chromatographic system consisted of a 2.0 x 100 mm C18 column and the gradient elution buffers used acetonitrile and 25 mmol/l formic acid. Two product ions produced from the protonated molecular ions were monitored in the selected reaction monitoring mode. The intra- and inter-assay variability (coefficient of variation) was below 10% at higher levels for all analytes, but at the reporting limits the variation was above 20% for 6AM, morphine-3-glucuronide and codeine-6-glucuronide. Ion suppression occurred early after injection but did not affect the identification and quantification of the analytes in authentic samples. The method was further validated by comparison with a reference gas chromatographic-mass spectrometric method using authentic urine samples. The two methods agreed almost completely (99%) regarding the identified analytes, but for the quantitative results there were slightly lower levels when measuring glucuronides directly as compared to total determination after hydrolysis by gas chromatography-mass spectrometry. We conclude that the presented liquid chromatographic-tandem mass spectrometric method is robust and reliable, and suitable for use as a confirmation method in urine drug testing for opiates
A method for the identification and quantification of morphine-3-glucuronide, codeine-6-glucuronide, ethylmorphine-6-glucuronide, and 6-acetylmorphine in human urine based on solid-phase extraction (SPE) and electrospray ionization liquid chromatography-mass spectrometry (LC-MS) was validated for use as a confirmation procedure in combination with immunochemical screening for opiates. Three deuterium-labelled analogues were used as internal standards: morphine-3-glucuronide-d3, codeine-d3, and 6-acetylmorphine-d3. Fifty-microliter aliquots of urine were prepared by SPE using 30-mg Oasis HLB cartridges. The chromatographic system consisted of a 2.0 x 100-mm C18 column and the gradient elution buffers used acetonitrile and 25 mmol/L formic acid. The protonated molecular ions were monitored in the selected ion monitoring mode together with one qualifier ion for each analyte. The interassay variability was less than 10% at the reporting limit 30 ng/mL for 6-acetylmorphine and 300 ng/mL for the other analytes. The method was validated by comparison with a reference gas chromatographic (GC)-MS method using authentic urine samples. The two methods agreed completely regarding identified analytes, and for the quantitative results there were slightly lower levels when measuring glucuronides directly as compared to total determination after hydrolysis by GC-MS. This result was to be expected because the free compounds are not measured with the LC-MS method. This study concludes that the presented LC-MS method is robust and reliable, and suitable for use as a confirmation method in clinical urine drug testing for opiates.
Background: Heparinized plasma samples allow more rapid analysis than serum samples, but preliminary studies showed lower cardiac troponin T (cTnT) results in plasma. We undertook a multicenter study to characterize this effect for cTnT and cardiac troponin I (cTnI). Methods: Blood samples were collected with and without heparin at five hospitals. cTnT was measured by a “third generation” assay (Elecsys®), and cTnI was measured by a commercial immunoassay (IMMULITE®). Results: Mean cTnT was 15% lower in heparin sampling tubes than in serum. Measured concentrations of cardiac troponins also decreased with increasing heparin concentrations added to sera. Heparin-induced losses were greater in early than in late phases after onset of chest pain. Addition of heparin (∼100 IU/mL) to serial samples from nine acute myocardial infarction patients produced mean cTnT losses of 33% at 1–12 h after onset of chest pain, 17% at 13–48 h, and 7% after 48 h. The changing heparin effects were seen for both cTnT and cTnI during time courses of individual patients with myocardial infarction. Conclusion: We suggest that binding of heparin to troponins decreases immunoreactivity, especially in early phases of myocardial injury. The resulting losses may depend on the antibodies used in each troponin assay.
Reference intervals in clinical chemistry are commonly based on results of measurements in reference populations or are taken from the literature. A reference population should represent a defined group of individuals and be as similar as possible to the patients under investigation. Frequently, reference populations have been recruited from institutionalised healthy young people who do not necessarily fulfill these criteria. In the present study we describe the temporal changes in 37 commonly measured quantities in men and women from childhood to late in life. The samples were collected in the primary health care and sorted according to an assumed decision by the physician. The emerging group of individuals forms a reference population that was regarded as "non-diseased" and the results of measurements in this population are reference values. A remaining group of "non-healthy" were likewise identified for comparison. The central 95 percentile was wider than those usually assigned to the quantities whereas the medians almost coincided. In the "non-healthy" group the medians were shifted in a direction that would be expected from pathophysiology aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.