SUMMARYContaminants can affect organisms' behaviour and, as a consequence, survival. Tau-fluvalinate (hereafter fluvalinate) is the active ingredient in a pesticide commonly used in North America to control Varroa destructor mites in honey bee (Apis mellifera) colonies. Fluvalinate's effects on honey bees are not well known. Honey bee cognitive and neural function can be assessed using the proboscis extension reflex (PER), which applies Pavlovian conditioning techniques. This study used PER to evaluate effects of fluvalinate on honey bee acquisition learning, (long-term) memory recall, responsiveness to sucrose, and mortality. We also evaluated how exclusion criteria for honey bees that did not exhibit PER during training and memory trials affected interpretation of results. Fluvalinate was administered both orally and dermally at high and low doses to mimic routes by which honey bees are exposed. We found negative effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival, especially in high oral doses. We also found significant consequences to interpretation of results using different exclusion criteria. For example, almost 50% of individuals that failed to show evidence of learning subsequently showed evidence of memory. The latter results have important implications regarding traditional assessment of PER-based learning and memory; the former results suggest that evaluation of honey bee exposure to fluvalinate and attendant consequences warrants further investigation.
The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees (Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.
Varroa mites, Varroa destructor Anderson & Trueman, are economically important pests of honey bees. Varroa mites are principally controlled within honey bee colonies using miticides. However, despite their importance in managing mite populations for apiculture, potential effects of miticides on honey bees are poorly understood. Using gas chromatography-flame ionization detection, we investigated concentrations, over variable time frames and within different body regions, of two commonly used miticides, tau-fluvalinate and amitraz, after dermal exposure to honey bees. We also quantified mortality of honey bees exposed to each miticide at both a low and high dose. Significant differences were observed in distributions of miticides among body regions. Within honey bee body parts, tau-fluvalinate was more readily absorbed and decreased in concentration more rapidly than amitraz. Mortality increased with higher dosages of miticides, and at higher dosages mortality was greater from fluvalinate than from amitraz. For individual honey bees, our results for rate of breakdown suggest that fluvalinate may be the preferred miticide for apiculturists, whereas our mortality results suggest that amitraz may be preferable. Either choice must be weighed against geographic variation in varroa resistance to each pesticide and attendant costs of parasitism.
Predator avoidance is an important component of predator-prey relationships and can affect prey availability for foraging animals. Each summer, the burrow-dwelling amphipod Corophium volutator is heavily preyed upon by Semipalmated Sandpipers (Calidris pusilla) on mudflats in the upper Bay of Fundy, Canada. We conducted three complementary studies to determine if adult C. volutator exhibit predator avoidance behavior in the presence of sandpipers. In a field experiment, we monitored vertical distribution of C. volutator adults in bird exclosures and adjacent control plots before sandpipers arrived and during their stopover. We also made polymer resin casts of C. volutator burrows in the field throughout the summer. Finally, we simulated shorebird pecking in a lab experiment and observed C. volutator behavior in their burrows. C. volutator adults were generally distributed deeper in the sediment later in the summer (after sandpipers arrived). In August, this response was detectably stronger in areas exposed to bird predation than in bird exclosures. During peak predator abundance, many C. volutator adults were beyond the reach of feeding sandpipers (>1.5 cm deep). However, burrow depth did not change significantly throughout the summer. Detailed behavioral observations indicated that C. volutator spent more time at the bottom of their burrow when exposed to a simulated predator compared to controls. This observed redistribution suggests that C. volutator adults move deeper into their burrows as an anti-predator response to the presence of sandpipers. This work has implications for predators that feed on burrow-dwelling invertebrates in soft-sediment ecosystems, as density may not accurately estimate prey availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.