The accumulation of α-synuclein aggregates is the hallmark of Parkinson’s disease, and more generally of synucleinopathies. The accumulation of tau aggregates however is classically found in the brains of patients with dementia, and this type of neuropathological feature specifically defines the tauopathies. Nevertheless, in numerous cases α-synuclein positive inclusions are also described in tauopathies and vice versa, suggesting a co-existence or crosstalk of these proteinopathies. Interestingly, α-synuclein and tau share striking common characteristics suggesting that they may work in concord. Tau and α-synuclein are both partially unfolded proteins that can form toxic oligomers and abnormal intracellular aggregates under pathological conditions. Furthermore, mutations in either are responsible for severe dominant familial neurodegeneration. Moreover, tau and α-synuclein appear to promote the fibrillization and solubility of each other in vitro and in vivo. This suggests that interactions between tau and α-synuclein form a deleterious feed-forward loop essential for the development and spreading of neurodegeneration. Here, we review the recent literature with respect to elucidating the possible links between α-synuclein and tau.
Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson's disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development.
Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.